

Sea Link

Volume 9: Examination Submissions

Document 9.86 Applicant's Comments on Other Submissions Received at Deadlines 3 and 3A

Planning Inspectorate Reference: EN20026

Version: B
February 2026

Page intentionally blank

Contents

1. About this Document	1
1.1 Purpose of this document	1
1.2 Structure of the Report	1
2. Applicant's Comments on the Submission from Aldeburgh Town Council	3
2.1 Introduction	3
3. Applicant's Comments on the Submissions from Natural England	11
3.1 Introduction	11
4. Applicant's Comments on the Submission from Sir Roger Gale MP	85
4.1 Introduction	85
5. Applicant's Comments on the Submission from TJ Haworth-Culf	86
5.1 Introduction	86
6. Applicant's Comments on the Submission from London Gateway Port Limited	92
6.1 Introduction	92
7. Applicant's Comments on the Submission from Cadent Gas Limited	98
7.1 Introduction	98
8. Applicant's Comments on the Submission from Friston Parish Council and Substation Action Save East Suffolk Limited	102
8.1 Introduction	102
9. Applicant's Comments on the Submission from Suffolk County Council	110
9.1 Introduction	110
10. Applicant's Comments on the Submission from Port of London Authority	136
10.1 Introduction	136

11. Applicant's Comments on the Submission from the Marine Management Organisation	141
11.1 Introduction	141

References 150

Appendix A Natural England Air Quality Technical Note A.1

Table 1.1 Structure of the Report	1
Table 2.1 Applicant's Comments on the Aldeburgh Town Council Deadline 3 Submission [REP3-112]	3
Table 3.1 Applicant's Comments on the Natural England Deadline 3 Submission [REP3-116]	11
Table 3.2 Applicant's Comments on the Natural England Deadline 3 Submission [REP3-117] - Appendix B3 Kent Onshore	14
Table 3.3 Applicant's Comments on the Natural England Deadline 3 Submission [REP3-118]	15
Table 3.4 Applicant's Comments on the Natural England F3 Deadline 3 Submission [REP3-119]	32
Table 3.5 Applicant's Comments on the Natural England Deadline 3 Submission [REP3-120] – Appendix H3 Suffolk Landscape Visual Impact Assessment (LVIA)	34
Table 3.6 Applicant's Comments on the Natural England Appendix J3A [REP3A-028]	41
Table 3.7 Applicant's Comments on the Natural England Appendix C3A [REP3A-026]	57
Table 3.8 Applicant's Comments on the Natural England Appendix E3A [REP3A-027]	57
Table 4.1 Applicant's Comments on the Sir Roger Gale MP Deadline 3 Submission [REP3-128]	85
Table 5.1 Applicant's Comments on the Stakeholder TJ Haworth-Culf Deadline 3 Submission [REP3-127] 86	
Table 6.1 Applicant's Comments on the London Gateway Port Deadline 3 Submission [REP3-114]	92
Table 7.1 Applicant's Comments on the Cadent Gas Limited Deadline 3 Submission [REP3-113]	98
Table 8.1 Applicant's Comments on the Friston Parish Council and Substation Action Save East Suffolk Limited Deadline 3 Submission [REP3-129]	102
Table 9.1 Applicant's Comments on the Suffolk County Council Deadline 3 Submission [REP3-122]	110
Table 10.1 Applicant's Comments on the Port of London Authority Deadline 3 Submission [REP3-121]	136
Table 11.1 Applicant's Comments on the Marine Management Organisation's Deadline 3 Submission [REP3-094]	141

Version History

Date	Version	Status	Description / Changes
February 2026	A	Final	For deadline 4 submission
February 2026	B	Final	To correct table 3.5 in chapter 3

1. About this Document

1.1 Purpose of this document

- 1.1.1 This document provides National Grid Electricity Transmission plc's (the Applicant's) comments on other submissions made by Interested Parties at Deadline 3 on 10 January and Deadline 3A on the 19 January, in response to the application for development consent for the Sea Link Project (the Proposed Project).
- 1.1.2 The Applicant will seek to respond to the late Deadline 3 submissions made by Suffolk Energy Action Solutions (SEAS) [**REP3-136 to REP3-144**] and Saxmundham Town Council [**REP3-133 to REP3-135**] by Deadline 4A.
- 1.1.3 Interested Parties responses received at Deadline 3 and 3A have been reviewed and considered in full. The purpose of this document is to provide the Applicant's comments on new matters or matters which have been expanded upon within Interested Parties submissions at Deadline 3 and 3A.
- 1.1.4 Comments received at Deadline 3A regarding the Change Request are provided in **Application Document 9.91 Applicant's Comments on Change Request (CR1) Relevant and Written Representations** submitted at Deadline 4.
- 1.1.5 Some submissions are not responded to at all because it is the Applicant's view that all matters raised have been responded to previously or no further comments are necessary.

1.2 Structure of the Report

- 1.2.1 Table 1.1 below outlines the structure of this document. The Applicant's comments are provided in response to paragraph numbers used in the original submissions, with paragraphs grouped where appropriate for clarity. Where paragraph numbers are missing, this indicates that the point is considered to have been responded to previously.

Table 1.1 Structure of the Report

Chapter	Interested Parties	Relevant Submission at Deadline 3
2	Aldeburgh Town Council	REP3-112
3	Natural England	REP3-116 to REP3-120
4	Sir Roger Gale	REP3-128
5	TJ Haworth-Culf	REP3-127
6	London Gateway Port Limited	REP3-114

Chapter	Interested Parties	Relevant Submission at Deadline 3
7	Cadent Gas Limited	REP3-113
8	Friston Parish Council and Substation Action Save East Suffolk Limited	REP3-129
9	Suffolk County Council	REP3-122
10	Port of London Authority	REP3-121
11	Marine Management Organisation	REP3-094

2. Applicant's Comments on the Submission from Aldeburgh Town Council

2.1 Introduction

2.1.1 Table 2.1 summarises the Applicant's comments on Aldeburgh Town Council Deadline 3 Response [REP3-112]

Table 2.1 Applicant's Comments on the Aldeburgh Town Council Deadline 3 Submission [REP3-112]

Reference	Matter	Point Raised	Applicant's Comments
2.1.1 Comments on Any Other Submissions Received at Deadline 3			
1	Introduction	Aldeburgh Town Council (ATC) responds to two aspects of the Applicant's Detailed Responses, it's reissued Chapter 10 and to material received by Deadline 2. As we are democratic body and the material is voluminous it has not been practicable to respond sooner. We would be grateful if the Inspectorate would consider accepting our submission.	The Applicant acknowledges that the Proposed Project's examination necessarily involves a high volume of material and notes with satisfaction that submission was accepted by the Examining Authority.
2	Introduction	ATC regrets that the Applicant has not responded to ATC's Representations at all and, when addressing concerns we share, has simply reiterated its original positions. The Applicant has declined to engage with us and seems to be pretending that Aldeburgh as a town and a community does not exist.	The Applicant has carried out an extensive programme of engagement as part of the pre application consultation, as set out in Application Document 5.1 Consultation Report [APP-301] . The Applicant has continued to engage with local communities and stakeholders since submission and through Examination, and will continue to do so.
3	Introduction	Tourism and traffic aspects of the Scheme greatly affect the town. As well as the objections to the substance of the Applicant's position, there is growing concern and its approach in refusing to accept the obvious or to engage with our community. The Applicant's approach is in contrast to that of Sizewell C. We hope that the Application is refused, but if it were not, we have no confidence that the Applicant would give good faith effect to requirements for mitigation of, or compensation for, the damage Aldeburgh would suffer.	The Applicant responds to the detailed points about tourism and traffic below.
4	Introduction	Despite the flaws in the original Application on the issues of tourism and prosperity pointed out by Councils, (also members of the public and groups including SEAS), the Applicant's Responses simply reaffirm what is said at the outset of these issues. ATC therefore draws the Inspectors' attention to what it seemed unnecessary to mention in its Relevant Representation.	
5	Tourism	ATC endorses what is said on this subject in the LIRs of the County and District Councils but adds the following about the particular position of the town. The Applicant's persistent refusal to face the obvious means that, if the Scheme were permitted to proceed, and we contend that it should not, requirements for mitigation and compensation would have to be significant and enforceable.	In response to the point raised on tourism impacts in popular visitor destinations, the Applicant has previously provided responses to these points raised in Table 11.1 of Application Document 9.35.1 Applicant's Comments on the Local Impact Report from Suffolk County Council [REP2-026] . The Applicant is setting up meetings with the local planning authorities to discuss the potential for monitoring impacts on visitors

Reference	Matter	Point Raised	Applicant's Comments
6	Tourism	<p>The Inspectors will know from common knowledge and their inspections that Aldeburgh is what both Councils call a 'tourist hotspot', the centre of tourism in the local area with the features summarised in our RR, and of world renown. The Councils and we understand SEAS have cited detailed evidence to demonstrate what is almost self-evident. In another context it would be simply funny that the Applicant discusses tourism without addressing the existence of the town. We read that SEAS calls it 'preposterous'. For ATC it is an obvious indication that the Applicant's approach is misconceived. The town receives no attention in the Applicant's discussion of tourism apart from reference to a small area on the outskirts divorced from proper context.</p>	<p>and tourism following the grant of development consent (if granted). The Applicant is also reviewing potential opportunities to liaise with tourism related businesses to seek their views on how tourism impacts can be minimised.</p> <p>The Applicant recognises that the potential for future environmental changes associated with the Proposed Project during construction, operation and decommissioning are a source of concern for local tourism in Aldeburgh.</p> <p>The Applicant has undertaken a comprehensive and robust Environmental Impact Assessment (EIA), through which no residual significant effects have been identified from a socio-economic, recreation and tourism perspective following the application of appropriate mitigation. Section 10.6 of Application Document 6.2.2.10 (B) Part 2 Suffolk Chapter 10 Socio-economics, Recreation and Tourism [REP1A-005] of the Environmental Statement (ES) defines the existing site and surroundings of the Proposed Project, identifying sensitive receptors for assessment, including a number of recreational routes and Public Rights of Way (PRoW), local businesses and visitor attractions in Aldeburgh. Section 10.9 assesses the potential effects of the Proposed Project on these private and community, recreation and tourism receptors. The assessment identified no significant effects on these receptors. Impacts on amenity for these receptors are assessed in Application Document 6.2.2.11 Part 2 Suffolk Chapter 11 Health and Wellbeing [APP-058]. In light of the topic-specific conclusions identified and mitigation in place, no significant adverse effects on human health and wellbeing are identified. This includes no significant effects arising from construction in relation to community severance, air quality, landscape and visual or noise that would materially affect health and wellbeing outcomes.</p> <p>The Applicant, however, is setting up meetings with the local planning authorities to discuss the potential for monitoring impacts on visitors and tourism following the grant of development consent (if granted). The Applicant is also reviewing potential opportunities to liaise with tourism related businesses to seek their views on how tourism impacts can be minimised.</p> <p>The Applicant notes there are concerns regarding the potential for adverse impacts on visitor and tourism accommodation. Application Document 6.2.2.10 (B) Part 2 Suffolk Chapter 10 Socio-economics, Recreation and Tourism [REP1A-005] concludes that there are no significant effects anticipated on local accommodation capacity arising from the Suffolk Onshore Scheme, Application Document 6.2.2.13 Part 2 Suffolk Chapter 13 Interproject Cumulative Effects [APP-060] also assesses the cumulative impact of the Proposed Project alongside other NSIPs, on local accommodation capacity. Under a worst-case scenario whereby the peak construction workforces of the cumulative schemes overlap, and all workers require accommodation, the chapter concludes that no significant effects are expected. As a result, no additional mitigation will be required.</p>

Reference	Matter	Point Raised	Applicant's Comments
			The Applicant is working closely with Sizewell C and SPR to explore ways that the impacts of construction workers traveling to site and staying in the local area could be minimised. The Applicant has had several meetings with Sizewell C, discussing the shared use of the Park and Ride Facilities being built by Sizewell C, the buses that they are providing for workers from Ipswich Train Station and any future initiatives they are planning. The types of construction workers used for the Proposed Project are more likely to stay in hotels within cities and large towns where they have access to other facilities based on experience from other National Grid projects.
7	Tourism	The Applicant's approach in Chapter 10 has three central flaws-	Please see response to Reference 6 above.
7.1	Tourism	Before applying any model to assessment of a subject the Applicant should first have appraised what its broad outline was likely to be - in this case obviously including Aldeburgh. Before applying a formula, you do a sanity check. If we adopt a method that does not address the main tourist area, is it the right one?	
7.2	Tourism	It is common ground that there is no specific relevant guidance but the Applicant proceeds as though there were-. The Applicant uses LA 112 revision 1 (Population and human health-web.pdf.) 'This document sets out the requirements for assessing and reporting the environmental effects on population and health from construction, operation and maintenance of highways projects.' That is not this case.	The Applicant notes there is currently no statutory guidance on the methodology for undertaking assessments of socio-economic, recreation and tourism effects. The assessment uses professional judgement and best practice methodologies from other assessments undertaken on comparable energy infrastructure schemes. Some of these schemes are referenced in Application Document 9.40 Visitor and Tourism Assessment Technical Note – Suffolk [REP3-065] .
7.3	Tourism	The Applicant applies 'professional judgment' without describing whose it is. But it is clear from the first two points that this judgement is unreliable.	Where relevant, the Applicant has drawn on guidance, including the <i>Design Manual for Roads and Bridges (DMRB) LA 112: Population and human health (National Highways, 2020)</i> . While it is noted that LA 112 has been developed for highway projects, it is considered relevant guidance given the Proposed Project is also a linear development. The assessment has also been informed by the <i>Department for Levelling Up, Housing and Communities (DLUHC) Appraisal Guide (2023)</i> and <i>Home and Communities Agency (HCA) Additionality Guide, Fourth Edition (2014)</i> which provide guidance for assessing and informing assumptions relating to economic impacts. The additionality assumptions have been estimated using a combination of professional judgement and assumptions applied in other comparable Nationally Significant Infrastructure Projects (NSIPs). As a result, the Applicant is confident that the approach and methodology applied for impacts on socio-economics, recreation and tourism has provided a robust assessment of the potential for significant effects arising from the Suffolk Onshore Scheme.
			Application Document 6.3.1.1.A ES Appendix 1.1.A Statement of Competence [APP-088] provides the relevant qualifications of the authors and reviewers involved in the preparation of the ES, including Application Document 6.2.2.10 (B) Part 2 Suffolk Chapter 10 Socio-economics, Recreation and Tourism [REP1A-005] .

Reference	Matter	Point Raised	Applicant's Comments
8	Tourism	<p>The only 'evidence' produced by the Applicant is an undisclosed review described as follows. The 'Applicant has undertaken a review of other Nationally Significant Infrastructure Projects (NSIPs) and their potential effects on tourism and visitor activity since the DCO submission. p13 of the EN020026-001736-9.34.1 Applicant's Detailed Responses to the Relevant Representations identified by the ExA.pdf. This is said to support the Applicant's view 'the evidence suggests that there will be no significant adverse effects on visitors or tourism as a result of the Suffolk Onshore Scheme's. The Applicant has not produced one relevant witness to support this absurd proposition.</p>	<p>Application Document 9.40 Visitor and Tourism Assessment Technical Note – Suffolk [REP3-065] presents evidence from several other NSIPs, demonstrating that such schemes have not resulted in material impacts on tourism or visitor numbers. This supports the conclusions set out in Application Document 6.2.2.10 (B) Part 2 Suffolk Chapter 10 Socio-economics, Recreation and Tourism [REP1A-005].</p>
9	Tourism	<p>In contrast the inspectors have the data from the Councils, and we understand too from SEAS, ATC's considered opinion, a petition from over 50 local businesses (like ATC none of these appear to have objected to Sizewell or even Scottish Power) as well as those who have made RRs. ATC is aware of other businesses such as the Aldeburgh Jubilee Hall which are very concerned about the Scheme.</p>	<p>In response to the point raised on impacts on local businesses and community assets, the Applicant has previously provided responses to these points raised in Table 2.11 (against reference 106) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations Identified by the ExA [REP2-014].</p> <p>The Applicant is setting up meetings with the local planning authorities to discuss the potential for monitoring impacts on visitors and tourism following the grant of development consent (if granted). The Applicant is also reviewing potential opportunities to liaise with tourism related businesses to seek their views on how tourism impacts can be minimised.</p>
10	Tourism	<p>In recent years, the Hall has substantially reduced its losses by promoting events attracting customers from a distance and its board is very concerned that the Scheme would severely damage its recovery.</p>	<p>Please see response to Reference 9 above.</p>
11	Traffic	<p>ATC adopts the submissions of the County Council and emphasises three points.</p>	<p>This is acknowledged by the Applicant.</p>
12	Traffic	<p>The A1094 is the town's lifeline not only for up to 15,000 visitors a day in the summer. It is the route for emergency services - the nearest A and E hospital for an elderly population is 24 miles away in Ipswich. Further the reputational damage would be devastating - when potential day visitors ask 'where shall we go today' the answer would be 'not Aldeburgh with that traffic.' As one example, Aldeburgh receives substantial numbers of coach trips and local businesses like the Summer Theatre advertise to the companies running them.</p>	<p>The Applicant has previously responded on considerations relating to emergency services in Table 6.7 and Table 6.8 of Application Document 9.34.5 (B) Applicant's Response to Selected Relevant Representation Responses [REP2-022].</p> <p>In terms of the A1094, the Traffic and Transport assessment within Application Document 6.2.2.7 Part 2 Suffolk Chapter 7 Traffic and Transport [APP-054] concludes that, with the management and mitigation identified within Application Document 7.5.1.1 (B) Outline Construction Traffic Management and Travel Plan – Suffolk [CR1-041] that there is not expected to be the potential for any significant effects as a result of construction traffic associated with the Proposed Project. This includes the assessment of Driver Delay along the A1094 based on peak construction traffic associated with accesses S-BM01, S-BM02, S-BM03, S-BM04, S-BM10, S-BM11 and S-BM13.</p>
			<p>The routing strategy is designed to minimise the number of construction vehicles using the A1094 through Aldeburgh and only a maximum of ten daily Heavy Goods Vehicle (HGV) movements (five arrivals and five departures) at the peak of the Proposed Project's</p>

Reference	Matter	Point Raised	Applicant's Comments
13	Traffic	<p>Aldeburgh Roundabout serves all traffic in and out of the town (except that from Thorpe Road where the landfall is proposed) has to go through Aldeburgh roundabout which the Applicant identifies as S-RJ11: A1094/B1122 Leiston Road/Church Farm Road roundabout in EN020026-000239-6.2.2.7 Part 2 Suffolk Chapter 7 Traffic and Transport.pdf. The Applicant proposes to use the roundabout for HGV routes to Accesses 5 and 6 and to the landfall within the town. 8.9 EA1N Outline Construction Traffic Management Plan. Currently ATC does not believe that the Applicant would keep to the suggested 10 vehicle a day limit and this would anyway be too much.</p>	<p>construction programme, are forecast to use the A1094/B1122 Leiston Road/Church Farm Road Roundabout in Aldeburgh as a result of the Proposed Project (associated with accesses S-BM01, S-BM02 and S-BM13 only).</p> <p>The routing strategy is designed to minimise the number of construction vehicles using the A1094 through Aldeburgh and only a maximum of ten daily HGV movements (five arrivals and five departures) are forecast to use the A1094/B1122 Leiston Road/Church Farm Road Roundabout in Aldeburgh as a result of the Proposed Project. Access to the landfall site will be limited and carefully managed. Measures including monitoring HGV movements and compliance with HGV routes are included in Application Document 7.5.1.1 (B) Outline Construction Traffic Management and Travel Plan – Suffolk [CR1-041]. The traffic and transport assessment within Application Document 6.2.2.7 Part 2 Suffolk Chapter 7 Traffic and Transport [APP-054] concludes that, with the management and mitigation identified within Application Document 7.5.1.1 (B) Outline Construction Traffic Management and Travel Plan – Suffolk [CR1-041] that there is not expected to be the potential for any significant effects as a result of construction traffic associated with the Proposed Project.</p>
14	Traffic	<p>'The Suffolk Coastal Cycle Route, which runs from Felixstowe to Lowestoft, passing through charming towns such as Aldeburgh and Southwold' uses this roundabout. https://www.thesuffolkcoast.co.uk/articles/road-cycling-on-the-suffolk-coast . British Cycling's 2025 Tour of Britain (men's) race came through Aldeburgh. https://www.britishcycling.org.uk/tourofbritain/men/route, and Classic car rallies regularly come to Aldeburgh. https://www.eadt.co.uk/news/25491588.classic-car-display-coming-moot-hallaldeburgh/</p>	<p>The routing strategy is designed to minimise the number of construction vehicles using the A1094 through Aldeburgh and only a maximum of ten daily HGV movements (five arrivals and five departures) are forecast to use the A1094/B1122 Leiston Road/Church Farm Road Roundabout in Aldeburgh as a result of the Proposed Project. The assessment of this roundabout (S-RJ11) within Application Document 6.2.2.7 Part 2 Suffolk Chapter 7 Traffic and Transport [APP-054], concluded that for all assessment criteria, that there is not expected to be the potential for any significant effects as a result of construction traffic associated with the Proposed Project, with the management and mitigation identified within Application Document 7.5.1.1 (B) Outline Construction Traffic Management and Travel Plan – Suffolk [CR1-041].</p>
15	Traffic	<p>Shortly, as part of the consented SPR application, the B1353 road (Thorpeness – Aldringham) will be closed for 25 days. https://aldringham.onesuffolk.net/news/events-and-items-of-interest/news/view/343 All vehicular access to Thorpeness from north and south will be via Aldeburgh, utilising the roundabout junction. That the Thorpe Road according to the Applicant '...does not connect with any other key routes within the study area' is due in part to the Applicant failing to consider a sufficiently wide area as being impacted by this application; ATC supports SCC's opinion that 2km should be considered the right zone to be assessed.</p>	<p>It is understood that the B1353 road closure for the SPR application has now taken place (this was planned between 5 January 2026 and 30 January 2026) and related to the installation of Access Points 3 and 4 onto SPR's construction haul road (with associated cable ducting and utility installation). Therefore, it does not appear that this road closure will be repeated or could potentially overlap with the peak construction phase of the Suffolk Onshore Scheme in 2028. The Applicant will liaise with SPR to confirm this. If SPR require further closures, the Applicant will engage with SPR to consider how best to manage construction requirements for both projects to minimise any potential disruption.</p> <p>The study area for the assessment was defined based on the area where there could potentially be a transport impact resulting from the construction of the Proposed Project. This includes routes along which HGVs will travel during the works programme, as well as the</p>

Reference	Matter	Point Raised	Applicant's Comments
		<p>As the A1094 reaches the roundabout and its four exits, there is a pedestrian crossing as people, particularly children, from the town's less affluent roads cross to reach the Primary School, Community Centre, Hospital, playground and open spaces, Library and, immediately opposite, Tesco and the Coop. The road also has to be crossed to reach the town Surgery. Due to the pavement layout, the route also forms part of the walk for Ramblers and general walkers using the Coastal Path from Snape direction, crossing from the north to the south side of the A1094 at this point, before following the Coastal Path south past the OGS towards the river.</p>	<p>most likely routes that will be used by other construction workers. The study area was defined (and agreed) following discussions with Suffolk County Council (SCC) during the initial scoping meeting on 9 June 2023 and when reviewing the proposed scope of the traffic surveys in December 2023. The study area was subsequently refined following further discussions and feedback received during Targeted Consultation. In terms of Thorpe Road, there is expected to be a maximum of ten daily vehicle movements (five arrivals and five departures), during peak construction activity, as a result of the Proposed Project which is not expected to result in the potential for any significant effects.</p> <p>Notwithstanding the above, the Applicant has a strong working relationship with SPR and is regularly reviewing the SPR programmes for EA1N and EA2 alongside the National Grid Friston (Kiln Lane) Substation programme and the Proposed Project's Programme.</p>
16	Traffic	<p>The Applicant assesses the problems at the roundabout, when the Scheme is in place as largely 'negligible' even though the Scottish Power Decision (which the town considered greatly underestimated the dangers) found that its scheme alone, before any Sea Link vehicle might arrive 'will have adverse transport and traffic impacts during construction, particularly during transport of AIL and in respect of HGV on the A1094 and at Aldeburgh.'</p>	<p>The routing strategy is designed to minimise the number of construction vehicles using the A1094 through Aldeburgh and only a maximum of ten daily HGV movements (five arrivals and five departures) are forecast to use the A1094/B1122 Leiston Road/Church Farm Road Roundabout in Aldeburgh as a result of the Proposed Project. As set out above, access to the landfall site will be limited and carefully managed.</p> <p>The assessment of the A1094/B1122 Leiston Road/Church Farm Road Roundabout in Aldeburgh within Application Document 6.2.2.7 Part 2 Suffolk Chapter 7 Traffic and Transport [APP-054], concluded that for all assessment criteria, there is not expected to be the potential for any significant effects as a result of construction traffic associated with the Proposed Project, with the management and mitigation identified within Application Document 7.5.1.1 (B) Outline Construction Traffic Management and Travel Plan – Suffolk [CR1-041].</p> <p>The routing strategy is designed to minimise the number of construction vehicles using the A1094 through Aldeburgh and only a maximum of ten daily HGV movements (five arrivals and five departures) are forecast to use the A1094/B1122 Leiston Road/Church Farm Road Roundabout in Aldeburgh as a result of the Proposed Project. Access to the landfall site will be limited and carefully managed.</p> <p>The assessment of the A1094/B1122 Leiston Road/Church Farm Road Roundabout in Aldeburgh within Application Document 6.2.2.7 Part 2 Suffolk Chapter 7 Traffic and Transport [APP-054], concluded that for all assessment criteria, there is not expected to be the potential for any significant effects as a result of construction traffic associated with the Proposed Project, with the management and mitigation identified within Application Document 7.5.1.1 (B) Outline Construction Traffic Management and Travel Plan – Suffolk [CR1-041].</p> <p>The traffic and transport cumulative assessment within Application Document 6.2.2.13 Part 2 Suffolk Chapter 13 Suffolk Onshore</p>

Reference	Matter	Point Raised	Applicant's Comments
			<p>Scheme Inter-Project Cumulative Effects [APP-060] concluded that no significant cumulative effects were likely on traffic and transport receptors when the Proposed Project is considered alongside other developments. This includes at the A1094/B1122 Leiston Road/Church Farm Road Roundabout in Aldeburgh where the EA1N and EA2 schemes combined are collectively expected to result in a maximum of nine daily HGV movements through this roundabout, as shown in Appendix 26.25 of the EA1N Environmental Statement (Full Ref: 6.3.26.25 Environmental Statement - Appendix 26.25 - Diagram of Traffic Movements Assigned to the Highway Network (Scenario 1)). The Applicant is committed to on-going engagement with other projects (including SPR) to identify potential opportunities for coordination during project delivery and to minimise potential highway impacts, and the potential for significant cumulative effects as a result of the Proposed Project and other cumulative schemes.</p>
18	Traffic	<p>Traffic data: ATC reiterates that it takes general issue with the period chosen to obtain the Baseline Traffic Data by the Applicant: '7.7.6 Baseline traffic data has been obtained for the surrounding highway network within the study area based on ATC and MCC surveys carried out in January and February 2024...' This was gathered at what is always the very quietest period of the commercial year for Aldeburgh, in common with many tourist destination towns. In 2024, February was the wettest month on record for East Anglia, with frequent weather warnings and flooding and as a result was additionally quiet. There were also several warnings to refrain from travel unless necessary. As one example: https://www.bbc.co.uk/news/uk-68253098</p>	<p>The Applicant reaffirms the responses on the traffic baseline data as previously provided within Application Document Applicant's response to the ExA's s89(3) letter of 5 September 2025 - 9.18 s89 (3) 16 September Covering Letter [AS-106] and in relation to the SEAS Traffic/Transport Relevant Representation within Table 2.57 of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014].</p> <p>To summarise, the Applicant recognises that traffic flows vary across the year and are higher at certain times such as in the summer months due to tourism and local events, for example. Although the traffic surveys within Suffolk were carried out in January and February, the baseline traffic flows which have informed Application Document 6.2.2.7 Part 2 Suffolk Chapter 7 Traffic and Transport [APP-054] are based on an agreed survey methodology with SCC Highways and are considered to be appropriate and robust for the purposes of the assessment work. Had higher baseline traffic flows been adopted to account for seasonal fluctuations during the summer, then the percentage increases as a result of forecast construction traffic associated with the Proposed Project would have been lower than what was reported for the majority of the assessment criteria in Application Document 6.2.2.7 Part 2 Suffolk Chapter 7 Traffic and Transport [APP-054]. This would have resulted in lower levels of impact being identified and reported. Therefore, no seasonal adjustments were made, as higher baseline traffic numbers would have generally been a less robust assessment scenario than lower baseline traffic numbers. The proposed working hours are also designed to minimise additional construction worker vehicle trips on the surrounding highway network during the weekday network peak hours.</p>
35	Conclusion	<p>ATC have welcomed Applicants making contact over Projects that stand to affect the town – both Sizewell over many years and Scottish Power Renewables over recent years have made</p>	

Reference	Matter	Point Raised	Applicant's Comments
36	Conclusion	<p>presentations at the Moot Hall and ATC believes it has good relations with both of these project organisers.</p>	<p>The Applicant has carried out an extensive programme of pre application consultation and continues to engage with all parties in the Examination process and also post consent.</p>

3. Applicant's Comments on the Submissions from Natural England

3.1 Introduction

- 3.1.1 Table 3.1 summarises the Applicant's comments on Natural England's Deadline 3 Response [REP3-116].
- 3.1.2 Table 3.2 summarises the Applicant's comments on Natural England Deadline 3 Response [REP3-117].
- 3.1.3 Table 3.3 summarises the Applicant's comments on Natural England Deadline 3 Response [REP3-118].
- 3.1.4 Table 3.4 summarises the Applicant's comments on Natural England Appendix F3 Deadline 3 Response [REP3-119].
- 3.1.5 Table 3.5 summarises the Applicant's comments on Natural England Deadline 3 Response [REP3-120].
- 3.1.6 Table 3.6 summarises the Applicant's comments on Natural England Appendix J3A [REP3A-028].
- 3.1.7 Table 3.7 summarises the Applicant's comments on Natural England Appendix C3A [REP3A-026].
- 3.1.8 Table 3.8 summarises the Applicant's comments on Natural England Appendix E3A [REP3A-027].

Table 3.1 Applicant's Comments on the Natural England Deadline 3 Submission [REP3-116]

Ref	Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
1	N/A	<u>Proposed changes to work plans at Suffolk landfall (changes 2-5)</u> Natural England advises, having reviewed the October 2025 Change Application Consultation Document, that we have no further advice to provide for changes 2-5 relating to Suffolk. Natural England is content that there are no further environmental concerns arising from these proposed changes.	N/A	This is noted by the Applicant.
Document reviewed: [PDA-037] 9.20.1 Landfall Sediment Modelling Report Aldeburgh				
2	N/A	<p>We note that this report draws from the 2010 Shoreline Management Plan (SMP7). The biggest influences on coastal processes here are the nearshore banks and how they modify wave and tidal energy and influence the drift of sediment. However, there is limited discussion of the Aldeburgh Napes in this report, with more evidence drawn from the influence of the Aldeburgh Ridge. However, the reason for this is not explained.</p> <p>We note that if the cable route remains as outlined it will not go through the Aldeburgh Ridge or Napes and so should not change their functioning directly. However, given the</p>	<p>Natural England advises that an impact assessment is conducted in relation to Coralline Crag and provided into Examination. As well further consideration of the Aldeburgh Napes and Ridge.</p>	<p>This is covered by a section added to Application Document 6.2.4.1 (D) Part 4 Marine Chapter 1 Physical Environment [REP3-020]: "Changes to the Aldeburgh Napes and associated role in the regional coastline morphology."</p> <p>The Proposed Project's installation activities largely avoid the Aldeburgh Napes by routing in between the Aldeburgh Ridge and Aldeburgh Napes. Any change to the sandbanks during cable burial will be limited in extent. The nearshore environment is dynamic, driven by the tidal currents and wave action. Therefore, the sandbanks are likely to recover relatively quickly (<1 year) as the majority of sandwave material</p>

complex nature of this area and how the movement of sediment within the system is influenced by different events, any potential impacts of cable protection placed in the area should be assessed, particularly where currently the bedform is mobile in nature.

Figure 1 Landfall Concept Drawing shows that all three HDD exit points will drill through Coralline Crag. No assessment of potential impacts to this geological feature is provided.

disturbed will remain within the cable corridor and mainly reworked by sediment transport patterns back into the sandbank system.

Impacts to the Coralline Crag are also included within **Application Document 6.2.4.1 Part 4 Marine Chapter 1 Physical Environment** submitted at Deadline 4.

The Applicant also confirms that additional detail on the exit pits at the Suffolk Landfall have also been provided within **Application Document 9.113 The Coralline Crag Technical Note** submitted at Deadline 4.

Document reviewed: [REP1-048] 6.2.2.2 (C) Part 2 Suffolk Chapter 2 Ecology and Biodiversity

3	Table 2.5 2.9.16 2.9.8	In Table 2.5 and paragraph 2.9.16 we note that the air quality dust impact zone has been increased to 250m following our advice. In section 2.9.8 we welcome that further details have been provided to explain how equipment would be retrieved should it become stuck during Horizontal Directional drilling (HDD) under Leiston-Aldeburgh Site of Special Scientific Interest (SSSI). However, we note paragraph 2.9.8 states "In the extremely unlikely event that a drilling string cannot be recovered it will be left in situ, having no ecological implications given the depth below ground". We advise that should a drilling string be unable to be recovered, an assessment of the potential impacts, including relating to soils and groundwater, should be undertaken to inform the decision of whether the equipment should be left in situ.	To fully resolve Point 11 we advise that the plan for dealing with HDD equipment if it gets stuck beneath Leiston-Aldeburgh SSSI should include an assessment of potential impacts prior to any decision being taken to leave equipment in situ. We advise an outline HDD management plan is provided and updated through examination. We also advise that a condition should secure submission and agreement of the final method statement prior to construction.	The Applicant confirms that Application Document 9.92 Outline Cable Specification and Installation Plan has been submitted at Deadline 4. The Applicant can confirm that within the Application Document 9.84 Register of Environmental Actional and Commitments [REP3-078] , B59 commits to the following: In relation to trenchless landfall works at both Suffolk and Kent, the contractor(s) will: Notify NE of changes to landfall HDD depth or any changes to the location of landfall exit pit; prepare a HDD landfall Method Statement and Drilling Fluid Management Plan in consultation with Natural England (NE), Kent Wildlife Trust (KWT) and Royal Society for the Protection of Birds (RSPB) as appropriate; and undertake HDD landfall hydrofracture modelling which is to be shared for information only with NE, KWT and RSPB when completed.
4	2.9.42	In paragraph 2.9.42 we welcome that the time woodlarks are non-breeding has been changed from 'September to February inclusive' to 'September to January inclusive' in line with our advice.	Point 8 of the risk and issue log is resolved	The Applicant confirms that is currently reviewing the REAC and associated Requirement 6 in light of the points raised at the ISH2, and we propose to ameliorate that drafting such that the provisions raised at the hearing are appropriately secured Application Document 9.84 Register of Environmental Actional and Commitments (REAC) will be submitted at a later deadline.
5	2.9.44	In section 2.9.44 the term residual effect has been changed to 'loop' effect.	Please can the Applicant provide further clarity on what is meant by the loop effect as without that we are unable to advise further.	This is a typographical error. The word loop should not have been added. The sentence should be unchanged from the original submission of this chapter: 'With this additional mitigation included the noise impact on the SPA is a negligible impact on a receptor of international importance, which is a negligible residual effect that is not significant.'
6	2.9.50	Paragraph 2.9.50 states that 7.6ha of priority habitat acid grassland would be temporarily removed during construction (this has been amended from 9ha in this	Natural England advises that further consideration of the scale of the impacts to acid grassland is required.	The EIA has treated acid grassland, irrespective of quality, as a 'priority habitat'. Regarding the specific botanical criteria that separate high quality acid grassland (which Natural England are referring to as 'priority

version of the document). However, in a recent meeting the Applicant explained that they believed the acid grassland north of the golf course to be not priority habitat, so we question whether this figure needs to be further revised.

habitat') from other types of acid grassland, the Applicant's Deadline 3 submission (Point 3 of Table 15 in **Application Document 9.36 Applicant's Comments on Other Submissions Received at Deadline 2 [REP3-064]**) discusses this matter and confirms the area of good quality (priority habitat) acid grassland within the Order Limits is 0.3 ha, as discussed with Natural England in meetings.

Document reviewed: [REP1-072] 6.6 (C) Habitats Regulations Assessment Report

7	Ex1.5.3 and 7.2.17	We note that in sections Ex1.5.3 and 7.2.17 the references to the woodlark breeding season have been changed from 'March-August' to 'February-August' inclusive, in line with our advice.	Point 13 resolved.	This is noted by the Applicant.
---	--------------------	---	--------------------	---------------------------------

Document reviewed: [REP1- 103] 7.5.3.2 (B) CEMP Appendix B Register of Environmental Actions and Commitments (REAC)

8	N/A	<p>Measure B59 includes the applicant to prepare an HDD landfall method statement and drilling fluid management plan, and to undertake HDD landfall hydrofracture modelling, with both to be shared with NE. We advise that an outline plan should be submitted into examination and that the final management plan should be agreed in consultation with relevant SNCC prior to construction. We note also in this measure that NE is to be notified of any change to landfall HDD depth or any changes to the location of landfall exit pit.</p> <p>We welcome the inclusion of measure B60, which is in line with our advice. We advise that a condition should be secured to allow no vehicle access to shingle habitats.</p> <p>We welcome measure B62, pre-construction botanical surveys to support monitoring of impacts relating to HDD.</p> <p>We note measure B63 to inform NE of any proposals to undertake groundwater investigation surveys on or adjacent to shingle habitats. To clarify our advice in A7, the GI surveys we were referring to were ground investigation surveys, such as were conducted to inform HDD feasibility. If the results of any future such surveys meant that a change in the depth of HDD drilling was needed, then potential dewatering impacts on sensitive shingle habitats would need to be assessed.</p>	<p>To resolve point 12, and outline HDD methodology should be submitted into examination and a condition should be secured for the final HDD management plan to be agreed in consultation with relevant SNCC prior to construction.</p> <p>Resolves point 4.</p> <p>To clarify Point 7, dewatering impacts should be assessed if additional ground investigation boreholes are needed or if the additional ground investigation surveys determine that a change in the depth of drilling is needed.</p>	<p>The Applicant can confirm that its approach to drilling fluid and 'frac out' from activities in the intertidal is presented within Application Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4. This outline plan is currently secured within the Draft Deemed Marine Licence.</p> <p>The Applicant confirms that is currently reviewing the REAC and associated Requirement 6 in light of the points raised at the ISH2, and we propose to ameliorate that drafting such that the provisions raised at the hearing are appropriately secured Application Document 9.84 Register of Environmental Actional and Commitments (REAC) will be submitted at a later deadline.</p>
---	-----	---	---	---

Table 3.2 Applicant's Comments on the Natural England Deadline 3 Submission [REP3-117] - Appendix B3 Kent Onshore

Ref	Section Key Concern and/or Update / Para	Natural England's Advice to Resolve Issue	Applicant's Comments
Table 2: Comments on document: REP1-050 6.2.3.2 (D) Part 3 Kent Chapter 2 Ecology and Biodiversity			
1	2.9.279 We note commitment GG31 which requires a written scheme of decommissioning to be submitted to the relevant planning authority 6 months prior to any decommissioning works and will follow National Grid's processes at that point in time, for assessing and mitigation environmental impacts.	We recommend that commitment GG31 is strengthened in line with the applicant's response to our Relevant Representations comment B12, to read: ' <i>A written scheme of decommissioning will be submitted for approval to the relevant planning authority at least six months prior to any decommissioning works. This would consider environmental impacts as required at that point in time, including to ecological receptors and designated sites</i> '.	The Applicant accepts this recommended change, and this will be included in a future update to the Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] .
2	2.9.30 We note that commitments B45 and B50 in the REAC have been updated so that any works deemed to cause a noise level greater than 60dB at the boundary of Sandwich Bay to Hacklinge Marshes SSSI, will take place outside of the breeding bird season (March to September inclusive). In addition, percussive and disturbing works (e.g. piling) associated with the installation of pylons either side of the SSSI will be undertaken outside of breeding bird season. – 2.9.35	Natural England is satisfied with the proposed avoidance/mitigation measures. Once the issue below is addressed, we should be able to agree that there will be no significant impact upon Sandwich Bay to Hacklinge Marshes SSSI as a result of the proposal.	Comment noted.
3	2.9.199 We note that a new commitment (B65) has been added to the REAC restricting tree height reduction works during operations to between July and February.	We are pleased to see that a resolution to this issue is progressing, but question why these works cannot be restricted for the entirety of the breeding bird season (March-September inclusive).	The Applicant has committed to avoid any tree height reduction works during March to June to minimise disturbance to breeding birds during the period when breeding/nesting activity is at its highest, which will therefore minimise potential effects on breeding bird populations. While some bird species do extend their nesting period beyond the end of June, the number of species is less than nest in the core period of March to June and therefore given the localised nature of any tree height reduction (if required at all) an absolute prohibition through the entire nesting season is considered disproportionate. However, any trees to be reduced in height will be subject to pre-clearance checks by an experienced ornithologist to ensure no active nests are disturbed.
Table 3: Comments on document: REP1-028 7.5.12 (B) Outline Offshore Invasive Non-Native Species Management Plan			
1	1.5.16 We are pleased to see that this document now includes consideration of Invasive Non-native Species (INNS) at the hoverport site and a new requirement in the REAC (B67) for pre-construction surveys to inform access routes which avoid vegetation stands and utilise existing hardstanding. – 1.6.1	We are satisfied that the risk of INNS introduction at the former hoverport has been considered and the appropriate controls put in place to manage this risk.	Comment noted.

We note that the former hoverport site is only to be used as an access route, with no earthworks, storage of equipment or materials or compounds located within this area.

Table 4: Comments on document: REP1-071 6.6 (C) Habitats Regulations Assessment Report

1	1.4.6	References to loss of functionally linked land have not been updated to show as a construction phase impact rather than an operational phase impact. We note that the Applicant has questioned whether this change is essential in their response to our Relevant Representations comment B19.	It is our advice that while the change is not essential to the outcome of the assessment, as the impact has still been considered and satisfactorily mitigated, it should be made for completeness.	The Applicant maintains their position in response to relevant representations and notes that it is acknowledged not to be essential.
2	2.9.50	Matters relating to air quality impacts.	In a letter dated 16 October 2025 we informed local authorities and the Planning Inspectorate (PINS) that Natural England is changing how it responds to consultations that might affect air quality. This advice will be based on our best scientific understanding of how to assess development impacts on air quality. Natural England has previously provided bespoke air quality advice on this project in our Relevant Representations dated 23 June 2025 (EN020026). We have reviewed this case and after careful consideration have concluded that the air quality related aspects arising from this DCO can be addressed using our new standard advice. Therefore, we refer you to the standard advice in the attached Annex 1 and will not be providing any further bespoke advice on this case. Though it would be helpful for the Applicant to demonstrate how they have taken our advice into account.	A response outlining how the assessment is consistent with Annex 1 is provided in Appendix A of Application Document 9.86 Applicant's Comments on Other submissions Received at Deadline 3 and 3A submitted at Deadline 4.

Table 3.3 Applicant's Comments on the Natural England Deadline 3 Submission [REP3-118]

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
Natural England's Advice On: [AS-007] 6.6 Report to Inform Habitats Regulations Assessment (Version B)			

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
1 Ex1.4.5	Based on the comments Natural England has provided below; we are unable to agree with the HRA conclusions. We also consider that not all impact pathways of effect on sensitive designated site features have been identified.	Owing to the uncertainty of risks posed by construction and operational activities at the Kent landfall to ecological receptors, we are currently unable to agree with the conclusions of the HRA. We advise that all pathways of effect on sensitive designated site features should be identified and considered. Please see additional comments provided below for explanation.	<p>The Applicant can confirm that additional information on the construction and operation activities at Pegwell Bay was submitted in Application Document 9.13 (B) Pegwell Bay Construction Method Technical Note [REP2-011].</p> <p>Pegwell Bay is a low energy environment in terms of tidal currents with the intertidal sections of the cable route (KP118 to KP120.5) subject to wetting and drying as the tide rises and falls. Sediment disturbed during cable burial will therefore remain in suspension for a limited period before the tide recedes and the majority of any suspended sediment deposited back onto the intertidal surface rather than being more widely dispersed.</p> <p>Application Document 9.20.2 Landfall Sediment Modelling Report Pegwell Bay [PDA-038] explains that peak current velocities in Pegwell Bay are less than 0.1 m/s. Due to the extremely low magnitude of tidal currents within Pegwell Bay, any increase in SSC will appear as a short duration 'spike' and similarly the extent of any deposition of sediment on the intertidal surface will be limited. The process described is similar to the natural disturbance of surficial sediments during typical storm conditions and on this basis no further assessment is considered necessary.</p>
2 4.3.4 & 4.3.34	Natural England welcomes the Applicant's efforts to avoid direct disturbance impacts to saltmarsh habitat at the Kent landfall. However, we are concerned that total intertidal seabed disturbance and disruption to coastal processes due to construction activities will impact on an area greater than the proposed 0.02km ² . As demonstrated by the numerous cable installation activity seabed disturbance impacts detailed in, for example [REP1-108].	The most up-to-date information on proposed construction activities at the Kent landfall/Pegwell Bay should be used to inform the HRA for seabed disturbance impacts to designated sites/features and disturbance to supporting habitat and species.	<p>Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment has been submitted at Deadline 4.</p> <p>Please also refer to response provided above to Ex1.4.5.</p>
3 4.3.10	Natural England advises that owing to uncertainty regarding the WCS for increases in SSCs and subsequent sediment deposition (leading to increased turbidity and smothering) due to construction activities at the Kent landfall, further information is needed to support the HRA conclusions.	The most up-to-date information on proposed construction activities at the Kent landfall/Pegwell Bay should be used to inform the HRA for increased SSCs and subsequent sediment deposition (and thus increased turbidity and smothering).	<p>Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment has been updated and submitted at Deadline 4.</p> <p>The upper intertidal habitat within Pegwell Bay is predominantly mud which is relatively insensitive to smothering. For example, the sensitivity rating for intertidal mud, which is a supporting habitat for the Thanet Coast and Sandwich Bay SPA, is between low to no sensitivity to 'Light' deposition of up to 5 cm of fine material.</p> <p>Note also that no infrastructure, other than that which is buried at the HDD exit pits or at the cable buried in a trench, will be present at Pegwell Bay.</p> <p>Pegwell Bay is a low energy environment in terms of tidal currents with the intertidal sections of the cable route</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
			<p>(KP118 to KP120.5) subject to wetting and drying as the tide rises and falls. Sediment disturbed during cable burial will therefore remain in suspension for a limited period before the tide recedes and the majority of any suspended sediment deposited back onto the intertidal surface rather than being more widely dispersed.</p> <p>Application Document 9.20.2 Landfall Sediment Modelling Report Pegwell Bay [PDA-038] explains that peak current velocities in Pegwell Bay are less than 0.1 m/s. Due to the extremely low magnitude of tidal currents within Pegwell Bay, any increase in SSC will appear as a short duration 'spike' and similarly the extent of any deposition of sediment on the intertidal surface will be limited. The process described is similar to the natural disturbance of surficial sediments during typical storm conditions and on this basis no further assessment is necessary.</p> <p>Where necessary, Application Document 6.6 (F) Habitats Regulations Assessment Report, submitted at Deadline 4 and previous versions of this Application Document, has been updated to take into account the most up to date information on proposed construction activities at the Kent Landfall/Pegwell Bay as set out in Application Document 9.13 (B) Pegwell Bay Construction Method Technical Note [REP2-011] and updated information included in Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4 and Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology submitted at Deadline 4. The Applicant can confirm that, taking into account the most up to date information, the conclusions of effect significance in relation to SSCs and subsequent sediment deposition remain unchanged (no likely significant effects) and there are no adverse effects on the integrity of the Sandwich Bay SAC, Thanet Coast SAC or Thanet Coast & Sandwich Bay SPA.</p>
5 7.3.68	<p>It is stated that the footprint of disturbance due to cable installation at the Kent landfall, will be limited and temporary. It is also stated that although disturbance will occur a second time (due to burial of permanent protection at the trenchless exit/entry points), the effect will be temporary [on fauna]. There is uncertainty regarding the WCS disturbance footprint for cable installation activities which needs to be addressed to demonstrate that effects will be limited and temporary. Natural England is also concerned in relation to the operation impacts</p>	<p>We advise that clarification of the WCS disturbance footprints for cable installation activities is needed to support and inform the HRA conclusions for the Kent landfall/Pegwell Bay.</p>	<p>Please refer to response provided above to 4.3.10.</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
from any bury protection becoming exposed due to coastal erosion.			
Natural England's Advice On: [PDA-037] 9.20.1 Landfall Sediment Modelling Report Aldeburgh			
1 N/A	The Applicant has provided the Landfall Sediment Modelling Report for Aldeburgh which is welcomed.	This issue is resolved.	Noted
2 Figures 10 and 22	The extent to which the cable route overlaps or runs adjacent to the Aldeburgh Napes and Ridge is unclear and not presented consistently across the relevant documents. Therefore, the extent to which the Aldeburgh Napes and Aldeburgh Ridge may be affected, through the lifetime of the Project, remains unclear. For example, through changes to waves, hydrodynamics, and sediment transport due to the placement of cable protection or adjacent to the sandbank systems.	The extent to which cable installation and cable protection could affect the Aldeburgh Napes and Aldeburgh Ridge needs to be clarified. Given the complexity of this sandbank system and the movement of sediment within and around it, it is important to understand both its morphodynamics and, in turn, the nature of any impacts on it due to the placement of cable protection measures.	This is covered by a section added to Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4: " <i>Changes to the Aldeburgh Napes and associated role in the regional coastline morphology.</i> "
3 Figure 1, and Sections 1.2 & 3.5.2	Further to our Rel Reps advice [RR-3290], we note that all three HDD exit options appear to be located in areas where Coralline Crag is present yet there is no assessment of potential impacts on the Coralline Crag due to the HDD or cable installation at landfall.	We draw the ExA attention to previous energy projects including Sizewell C and East Anglia 1N and East Anglia 2 which have all designed their projects to avoid impacts to this unique irreplaceable geological feature only found in the area around Aldeburgh and Orford In [AS-114] it is stated that the HDD exit point will target an exit location that will be designed such that there is not a risk of exiting where the Coralline Crag is at the surface. It is also stated that during detailed design, the HDD contractor will microsite the exit points based on seafloor surveys and ground investigations. However, in [PDA-037] it is stated that all 3 potential points will go through the crag, and it is not stated whether drilling through this geological feature may have any impacts on the crag. This needs to be clarified. We reiterate our earlier advice that potential impacts on the Coralline Crag due to cable installation and HDD need to be fully assessed. Furthermore, we advise that impacts to the Coralline Crag should be avoided and/or minimised when selecting the marine exit site and onwards cable installation works.	<p>The updated assessment Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment, submitted at Deadline 4 included consideration of the horizontal directional drilling (HDD) in terms of hydrodynamics and sediment regime impacts:</p> <ul style="list-style-type: none"> • It should be noted that there will be no use of a cofferdam at the Suffolk landfall site. • Impact of protection at HDD breakout at Suffolk landfall: <ul style="list-style-type: none"> – The nearshore seabed is considered to have low sensitivity as the bed is expected to naturally recover via natural sediment transport processes driven by the wave and current action in shallow waters after one or two tidal cycles. – The placement of protective measures at the HDD breakouts will be temporary. The rock bags/concrete mattresses may be present on the seabed for a few months depending on the finalisation of the installation programme. Any interference with sediment transport pathways will therefore be relatively short-term and once removed, a return to pre-installation conditions can be expected.

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
			<ul style="list-style-type: none"> – Post-installation protection such as rock bags/concrete mattresses would then be added to stabilize the HDD exits, replacing the existing temporary protection. This protection would be buried below the seabed and therefore will not interfere with hydrodynamic or sediment transport patterns. – Coralline Crag (CC) outcrops are geologically resistant features that are already exposed to the influence of currents and wave action. Consequently, scouring of the CC cannot be considered in the same way as mobile seabed material. • Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] includes a commitment (GH14) that the HDD breakout will be located to the east of the CC outcrop specifically to avoid damaging this important feature. • Response 1PE7 in Application Document 9.73 Applicant's Responses to First Written Question [REP3-069] shows the HDD exit locations to the east of the continuous crag outcrops. <p>Integrity of the HDD bore beneath Coralline Crag outcrops:</p> <ul style="list-style-type: none"> • The integrity of the CC outcrops will not be compromised by sub-seabed HDD cable installation. As described in Appendix A of Application Document 7.3 Design Development Report [APP-321], the coralline crag is a weakly cemented, slightly gravelly very silty sand with frequent shell fragments, that is expected to form a stable borehole. The HDD will be designed at sufficient depth to ensure that it is within competent ground beneath the crag outcrops to ensure that the surface outcrops are unaffected by the HDDs.
4 Sections 3.2.2 & 3.2.3	We note that the coastal erosion assessment refers to the National Coastal Erosion Risk Mapping (NCERM) project data, however, we would advise that NCERM has been superseded.	We advise that the most recent NCERM data should be considered as part of an updated impact assessment.	<ul style="list-style-type: none"> • The 2024/5 NCERM2 dataset has been used to assess the future baseline conditions associated with potential shoreline change. • In order to assess the worst-case scenario for future erosion extent at the Kent and Suffolk landfalls, the NFI NCERM 2025 dataset was downloaded that estimates erosion based on the UKCP18 high emissions scenario, Representative Concentration Pathway (RCP) 8.5, in the 95th percentile, for a no intervention scenario.

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
			<ul style="list-style-type: none"> • Limitations of NCERM: <ul style="list-style-type: none"> – The NCERM does not have data at the landfall site, therefore, the assessment used available data from nearby to provide an approximate future erosion extent. – It should be noted that the NCERM data shows areas of land likely to be at erosion risk but does not show the precise future position of the shoreline. Erosion may happen faster or slower, and risk may change over time. • The NCERM2 dataset and The Anglian Coastal Monitoring Programme shows us that this is a coastline at risk of erosion, however, the Proposed Development is assessed to have no significant impact on erosion of the coast and will not worsen erosion at the landfall site or adjacent sections of coastline. • Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078], states that further analysis will be undertaken to consider the potential for coastal erosion over the lifetime of the project in line with the final Offshore Construction and Environmental Management Plan. This information will be used to inform the detailed design of the Proposed Project, to ensure that the risk of future exposure of the offshore burial cables is reduced as far as practicable.
Natural England's Advice On: [PDA-038] 9.20.2 Landfall Sediment Modelling Report Pegwell Bay			
1 General comment	Natural England advised previously that the Landfall Assessment at Pegwell Bay should be provided by the Applicant.	The Applicant has now provided this report (and the corresponding report for the Suffolk landfall). This issue is, therefore, resolved.	This is noted by the Applicant.
2 Page 17	Natural England notes that the report refers to National Coastal Erosion Risk Mapping (NCERM) Project data. However, we advise that this has been superseded by NCERM2.	We advise that the most recent NCERM data should be considered as part of an updated impact assessment.	<ul style="list-style-type: none"> • The 2024/5 NCERM2 dataset has been used to assess the future baseline conditions associated with potential shoreline change. • In order to assess the worst-case scenario for future erosion extent at the Kent and Suffolk landfalls, the NFI NCERM 2025 dataset was downloaded that estimates erosion based on the UKCP18 high emissions scenario, Representative Concentration Pathway (RCP) 8.5, in the 95th percentile, for a no intervention scenario. • Limitations of NCERM:

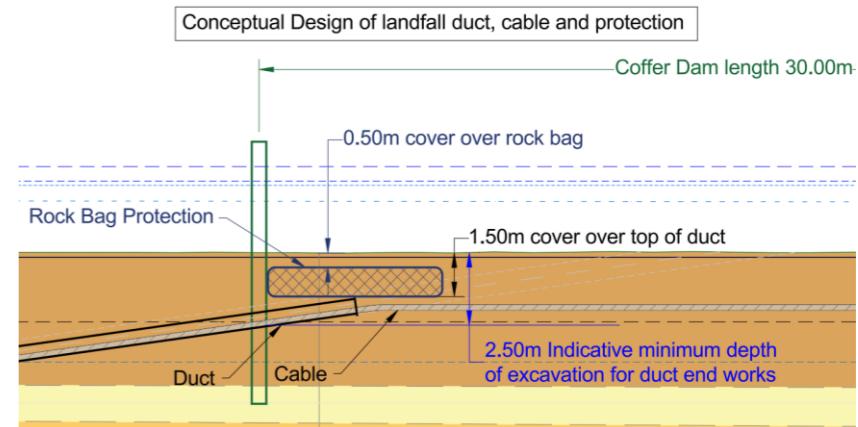
Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
			<ul style="list-style-type: none"> – The NCERM does not have data at the landfall site, therefore, the assessment used available data from nearby to provide an approximate future erosion extent. – It should be noted that the NCERM data shows areas of land likely to be at erosion risk but does not show the precise future position of the shoreline. Erosion may happen faster or slower, and risk may change over time. • The NCERM2 dataset and The Anglian Coastal Monitoring Programme shows us that this is a coastline at risk of erosion, however, the Proposed Development is assessed to have no significant impact on erosion of the coast and will not worsen erosion at the landfall site or adjacent sections of coastline. • Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078], states that further analysis will be undertaken to consider the potential for coastal erosion over the lifetime of the project in line with the final Offshore Construction and Environmental Management Plan. This information will be used to inform the detailed design of the Proposed Project, to ensure that the risk of future exposure of the offshore burial cables is reduced as far as practicable.
3 Section 4	<p>Natural England notes that the Applicant has further assessed historical changes in intertidal and subtidal elevation, nearby beaches, migration of Shell Ness and the River Stour channel, which is welcomed. However, a number of potentially significant risks remain regarding adequate cable burial and siting of the landfall infrastructure over the lifetime of the Project, as detailed in the comment below.</p>	<p>Whilst the Applicant has considered future vertical elevation changes to the beach/intertidal and coastal retreat rates at landfall, as advised, we note that this report highlights further uncertainty regarding cable burial and landfall infrastructure vulnerability over the lifetime of the Proposed Project. Please see further comments on this below.</p>	<p>This is noted by the Applicant - See below</p>
4 Section 5 /Page 62	<p>Whilst we welcome the Applicant's landfall assessment, the report has highlighted a number of potentially significant risks to adequate cable burial and siting of landfall infrastructure (e.g. Transition Joint Bay) over the lifetime of the Project. These include:</p> <ul style="list-style-type: none"> • Continued migration of the River Stour channel northwards towards the cable route 	<p>Natural England advises that the onus is on the Applicant to adequately assess and manage the risks and uncertainties for cable exposure and landfall infrastructure vulnerability, which is of vital importance. Further assurance is needed to demonstrate that landfall infrastructure and construction activities will not be affected by morphological change over the project lifetime (i.e. 40-60 years) or vice versa, interrupt coastal processes and affect coastal morphology and/or sensitive benthic/supporting habitats.</p>	<p>As noted in the detailed landfall assessment, Application Document 9.20.2 Landfall Sediment Modelling Report Pegwell Bay [PDA-038] historical variations in bed levels along the proposed cable route for the mid to upper intertidal sections are in the range ± 0.25 m with increased variability of ± 0.5 m lower down the intertidal at approx. KP119.</p> <p>On the above basis, it was concluded that in terms of future variability in bed levels, "<i>it is not expected that this would pose a problem to the cable</i>". In the unlikely event of the cable becoming exposed, appropriate remedial</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
	<ul style="list-style-type: none"> • Erosion and flooding potential of the cable corridor area at the coastline • Future changes to the drivers of sediment transport in the area (e.g. tidal currents, wave climate, nearshore shoals, and banks) • Climate change effects (e.g. mean sea level rise, increased erosion rates, shoreline retreat) • Future shoreline management policy changes. 	<p>measure would be undertaken to safeguard the integrity of the cable and avoid any wider-scale effects.</p> <p>Exposure of the cable would require a significant northward migration of the entire River Stour low water channel which is not considered to be a realistic future scenario within the service life of the cable. Northward migration may occur in close proximity to Shell Ness, although future growth of this feature is expected to be episodic.</p> <p>Based on the envelope of change in bed level over the period 2007-2022 (Figure 27) in Application Document 9.20.2 Landfall Sediment Modelling Report Pegwell Bay [PDA-038], the most significant changes are shown to have occurred more than 500 m to the south of the proposed cable route, this includes recent periods when Shell Ness has migrated northwards.</p> <p>The steep-sided cross-sections of the river channel where it crosses the intertidal are indicative of a stable morphology, further supported by the limited requirement for dredging to maintain a navigable channel. The channel is therefore expected to naturally adapt to the gradual influence of rising sea levels rather than being disturbed from its current equilibrium state.</p>	

Natural England's Advice On: [REP1-052] 6.2.4.1 (C) Part 4 Marine Chapter 1 Physical Environment (Tracked) & [REP1-010] 6.4.4.4.1 (B) Environmental Statement Figures Marine Physical Environment (Tracked)

1	General comment	<p>In [REP1-033] it is stated that this ES chapter has been 'updated in response to Relevant Representations from various stakeholders and to incorporate information from Application Document 9.13 Pegwell Bay Construction Method Technical Note.' However, Natural England highlights that we have found it difficult to identify where changes have been made to this ES chapter, apart from the following:</p> <ul style="list-style-type: none"> • Sections 1.7.67 • Table 1.18 <p>We also note that Figures 6.4.4.1.13 and 6.4.4.1.14 have been added to [REP1-010].</p>	<p>We advise that for future updated documents, ES chapters etc that the changes/updates made should be clearly identified within that document and, where possible, signposted.</p>	This is noted by the Applicant.
2	1.7.67	<p>It is stated that "It is considered highly unlikely that the River Stour low water channel will migrate northwards to coincide with the buried cable alignment during the operational life of the Proposed Project." Furthermore, it is stated that ongoing maintenance dredging by the local port authority has helped stabilise the channel position further reducing the risk of future</p>	<p>Further consideration should be given to the risk posed by Stour channel migration to the cable burial depth over the lifetime of the Project.</p>	Please see response to point 4 on Natural England's Advice On: [PDA-038] 9.20.2 Landfall Sediment Modelling Report Pegwell Bay above.

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
	channel migration. However, the evidence presented in [PDA038] highlights the uncertainty regarding the future position of the River Stour channel relative to the position of the proposed cable route. Therefore, we remain concerned, that future channel migration coupled with potential changes in channel maintenance dredging plans, climate change impacts etc pose a risk to the buried cables over the lifetime of the Project.		
3 Table 1.18	We welcome confirmation that there is no requirement for use of a cofferdam at the Suffolk landfall.	Can the Applicant signpost/confirm where this commitment is secured, to resolve this issue.	This is outlined in: Application Document 6.2.1.4 (D) Part 1 Introduction Chapter 4 Description of the Proposed Project [REP1A-003] , Table 4.11 Summary of landfall installation parameters.
4 1.10.1	Additional mitigation measure MPE06 ensures that over the operational lifetime of the Proposed Project monitoring of the beach profile and erosion rates will be carried out at the Suffolk landfall site where protection is planned to be placed at the HDD exit pits. However, there is no similar commitment for the Kent landfall. We would advise that owing to the nature conservation and supporting habitat importance of Pegwell Bay and potential for impacts to the coastal and nearshore morphology due to the installation and protection of cables in the intertidal and shallow subtidal areas over the long-term (40-60 years), that monitoring should also be carried out at the Kent landfall.	<p>We advise that a similar commitment to MPE06 should be adopted for the Kent landfall through monitoring of change in the intertidal and shallow subtidal areas, in particular where protection is planned to be placed at the HDD exit pits.</p> <p>We also note that commitment MPE05 [REP1-103] ensures depth of burial monitoring surveys will be undertaken post installation. We would, therefore, advise that the same commitment should be made for Pegwell Bay. In addition, we would advise monitoring to validate ES predictions regarding changes to nearshore seabed morphology (and associated flow dynamics), seabed recovery, and to ensure there are no unexpected changes to intertidal/shallow subtidal morphology. Furthermore, for this to be considered mitigation we advise that any monitoring conditions should also include a requirement to undertake remediation measures where required.</p>	<p>Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078], states that further analysis will be undertaken to consider the potential for coastal erosion over the lifetime of the Proposed Project in line with the final Offshore Construction and Environmental Management Plan. This information will be used to inform the detailed design of the Proposed Project, to ensure that the risk of future exposure of the offshore burial cables is reduced as far as practicable.</p>
5 1.9.23	Natural England notes that the WCS cofferdam parameters at each HDD exit pit are as follows: 10-15 m in length, 3-5 m width, and 2 m depth below seabed level. However, in [REP1-108] it is stated that the assessed WCS assumes the construction of smaller cofferdams (maximum length 30m, width 5m, piling depth approx. 6m below ground level and 2m excavation depth within the cofferdams) on four separate occasions. Therefore, we remain concerned, that the increased WCS cofferdam size represents an increase not only in intertidal sediment disturbance, but also blockage potential, which could modify waves and/or current flows around the structure, affecting sediment transport, and leading to morphological change.	Natural England advises that the EIA should be updated accordingly, taking into account the larger cofferdam size proposed, seabed disturbance area and volume, blockage potential, and scour potential. Duration and timing of the cofferdam installation and presence should be taken into account.	<p>Application Document 9.13 (B) Pegwell Bay Construction Method Technical Note [REP2-011] explains that:</p> <p>The assessed worst-case scenario assumes the construction of smaller cofferdams (maximum length 30 m, width 5 m, with piling depth approximately 6 m below ground level and excavation depth within the cofferdams to a depth below seabed of 2 m) on four separate occasions during HDD drilling and duct installation. Based on previous works, it is anticipated it will take up to seven days to install a cofferdam around a single HDD exit pit. Only one cofferdam will be installed at any one time, and while the total duration for all cofferdams in place is 120 days, each cofferdam is expected to be in place for only 30 to 60 days. Therefore, any impact will be temporary.</p> <p>(Application Document 9.13 Pegwell Bay Construction Method Technical Note [REP2-011]).</p>


Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
			<p>The cofferdams will be located essentially at Mean Sea Level (MSL) (0.20 m OD elevation, MSL is approximately 0.15 m OD. Therefore, for 50% of the time the area surrounding the cofferdam will be dry and no scour will be taking place. Further, Application Document 9.20.2 Landfall Sediment Modelling Report Pegwell Bay [PDA-038], explains that peak current velocities in Pegwell Bay are less than 0.1 m/s, which is well below the flow rates associated with any significant scour depths.</p> <p>On this basis and taking into account the larger cofferdam dimensions than previously considered, the magnitude of any change in relation to the cofferdam on nearshore seabed morphology (and the associated flow dynamics) will be small. This results in a minor effect which is not significant.</p> <p>Application Document 6.2.4.1 Part 4 Marine Chapter 1 Physical Environment has been submitted at Deadline 4.</p>
6 1.9.24	<p>Natural England also advises that an increase in WCS cofferdam size will have accompanying increase in seabed disturbance footprint, potential blockage effect and scour potential. Therefore, further consideration of predicted seabed recovery time associated with the larger cofferdam size and impacts to the seabed is required.</p>	<p>We advise that the implications of the larger cofferdam dimensions to the EIA conclusions should be considered and evaluated, in terms of the scale and duration of seabed morphological impacts. This should also include the WCS predicted nearshore seabed recovery time.</p>	<p>As outlined in the response above (point 5), Application Document 6.2.4.1 Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4 has been updated to include the larger cofferdam dimensions and the assessment updated.</p>
7 1.9.36	<p>It is stated that the Offshore Scheme installation largely avoids the Aldeburgh Napes and the magnitude of impact to them is likely to be small. However, the magnitude of the impact has not been quantified. This information is needed to inform the impact assessment and support the EIA conclusions.</p>	<p>We advise that the scale/extent of cable installation impacts on the Aldeburgh Napes need to be provided to inform the impact assessment and support the EIA conclusions</p>	<p>Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4, describes <i>“Changes to the Aldeburgh Napes and associated role in the regional coastline morphology”</i>. Further detail to further explain the magnitude of the impact has been added to the assessment:</p> <p>The presence of sandwaves is indicative of the influence of strong tidal currents and this evidence of a dynamic seabed confirms the finding of our assessment that the seabed will rapidly recover following installation of the cable.</p> <p>The Proposed Project's installation activities avoid the Aldeburgh Napes by routing in between the Aldeburgh Ridge and Aldeburgh Napes. The cable route passes between the sandbank thus avoiding any detrimental impact on these features. The marine environment is dynamic, influenced by both tidal currents and wave action. Therefore, recovery of the seabed will be relatively rapid (weeks/months) as the majority of material disturbed remaining within the cable corridor and mainly reworked by sediment transport processes.</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
8 1.9.70 & Table 1.19	<p>Natural England highlights that the presence of cable protection measures adjacent to Goodwin Sands MCZ, or their potential to modify sediment transport processes, is not discussed. Yet, the Offshore Scheme boundary runs adjacent to the boundary of Goodwin Sands MCZ for approximately 3.2 km, between KP107.3 to KP110.5. If cable protection were to be placed adjacent to the MCZ, it could modify the sediment transport regime and hinder the conservation objectives of the protected features of the MCZ. Therefore, we are unable to agree with the assessment of minor effect significance. With regards to Cross Ledge Sandbanks, the potential for, and magnitude of, impacts to these features due to the presence of cable protection is not clear. Without supporting evidence, it is not clear how the sensitivity rating of medium has been reached, or assumption that the Cross Ledge Sandbanks would be resilient to the presence of cable protection. Therefore, we are unable to agree with the conclusion of minor effect significance.</p>	<p>Natural England advises that the potential impacts to Goodwin Sands MCZ and Cross Ledge Sandbanks from the placement of cable protection should be clarified and assessed. If relevant, the total area and volume of external cable protection in Cross Ledge Sandbanks should be provided. Evidence should also be provided to support the assessment conclusions and assumptions regarding their resilience and sensitivity to cable protection measures placed on/adjacent to them.</p>	<p>As is outlined in Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4:</p> <p>Goodwin Sands is approximately 3.3 km from the cable crossing point at KP 113.1 (Nemo Link) and the Cross ledge Sandbanks are approximately 3 km from KP 113.1. Here the following protection may be used with the following dimensions (dependent on specific Crossing Agreements):</p> <ul style="list-style-type: none"> • Mattressing: 0.3 m x 3.0 m x 6.0 m or 0.45 m x 3.0 m x 6.0 m; • No pre-lay berm: 1.0 m (H) x 1.0 m (top) x 7.0 m (base) with 1:3 slope. • Includes pre-lay berm 1.0 m (H) x 1.0 m (top) 10.0 m (base) with 1:3 slope. <p>At these dimensions, the protrusion of the protection above the sea floor will not cause any significant interference with flow dynamics or sediment transport patterns on a scale that would lead to the change in morphology of the Goodwin Sands banks Marine Conservation Zone (MCZ) or the Cross Ledge Sandbanks. While locally some scour is expected to occur around the protection, the hydrodynamic and sediment transport regimes that are associated with development and maintenance of the Goodwin Sands MCZ complex and the Cross Ledge Sandbanks, occur on a regional scale that will not be altered by the presence of low-lying protection that are also situated ~3 km from the respective sandbanks. Therefore, the effect of the impact is assessed to be minor in both cases.</p> <p>Should remedial rock protection be required, or a cable joint be installed together with any associated rock protection, these measures are not expected to have a significant impact on the Goodwin Sands MCZ or Cross Ledge Sandbanks as the specifications of remedial protection or joint cable protection will be designed to a similar or small scale and therefore are assessed to have no significant impact on the Goodwin Sands MCZ.</p>
9 Figure 6.4.4.1.11 Sheet 1 (Offshore Seabed Surficial Geology Overview Sheet)	<p>We note that Figure 6.4.4.1.11 Sheet 1 (Offshore Seabed Surficial Geology Overview Sheet) identifies a number of Reefs and sandbanks not in a designated site. It is unclear whether these features may be affected cable protection measures placed on or adjacent to them.</p>	<p>We advise that the Applicant should provide an indicative map of proposed cable protection locations relative to these features to inform the impact assessment on marine processes.</p>	<p>Figure 6.4.4.1.11 in Application Document 6.4.4.1 ES Figures Marine Physical Environment submitted at Deadline 4 has been updated to show the crossing points.</p> <p>There will be no direct interaction with Thanet Coast SAC, Thanet Coast MCZ and the cable completely avoids any chalk reef mapped.</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
Natural England's Advice On: [REP1-108] 9.13 Pegwell Bay Construction Method Technical Note (Version A) (Tracked)			
1 2.2.2-2.2.7	<p>We note that a requirement has been identified for two access routes onto the Pegwell Bay intertidal mudflats during all stages of landfall construction and cable installation and, if required, during operation for maintenance purposes. These two access routes would be via the disused hoverport at the northern end of the bay, and by transportation from the sea.</p>	<p>We strongly advise that all impact pathways and maximum design scenario for the proposed access routes across the intertidal should be identified for the marine physical environment and the EIA updated accordingly.</p>	<p>There may be a requirement to install temporary bog mats at locations where the former hoverport access corridor crosses the Nemo and Thanet cables. This would be to provide protection for these cables during construction and to minimise the potential for any disturbance to the ground around the cables. Final details of the construction access route and requirements for ground protection mats will be set out in the Landfall Construction Method Statement (Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078])</p>
	<p>The final location and width of the access routes across the mudflats will be determined preconstruction.</p>	<p>Furthermore, consideration should be given to the nature and extent of impacts to sensitive intertidal and subtidal habitats/qualifying features through the lifetime of the Proposed Project.</p>	<p>While the maximum design scenario for these access routes have not yet been defined, the assessment for the physical environment has been assessed in the updated chapter: Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4.</p>
	<p>We also note that there may be a requirement to install temporary road plates (steel sheet piles and steel support waling and struts) or bog mats at locations where the former hoverport access corridor crosses the Nemo and Thanet cables.</p>		

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
			<p>ducting, including duct end works and installation of temporary rock bags/concrete mattresses in intertidal area to stabilise duct ends.</p> <ul style="list-style-type: none"> • HDD marine cable pull-in and burial (six months Q2 to Q3 2029) – marine cable pull in followed by cable burial. <p>...shows that works will be carried out over a number of months, in which time the nearshore intertidal seabed is expected to, at least, partially recover in-between phases.</p>
3 2.3.3	<p>It is stated that the assessed WCS assumes the construction of smaller cofferdams (maximum length 30m, width 5m, piling depth approx. 6m below ground level and 2m excavation depth within the cofferdams) on four separate occasions. However, we noted that this is considerably greater than the cofferdam dimensions assessed in [REP1-052] (the Marine Physical Environment ES chapter) which are as follows: 10-15 m length x 3-5 m width x 2 m depth.</p>	<p>We advise that the WCS cofferdam dimensions and seabed disturbance area, volume, and duration, should be clarified and all relevant documents and assessments updated accordingly.</p>	<p>As outlined in comment 5, Application Document 6.2.4.1 Part 4 Marine Chapter 1 Physical Environment has been updated and submitted at Deadline 4 to include the larger cofferdam dimensions and the assessment updated.</p>
4 Section 2.3	<p>Natural England notes that three different cofferdam construction options are proposed including prefabricated filled tanks, a barge with moonpool grounded after positioning, or piled sheeting. However, the Marine Physical Environment chapter [REP1-052] states that either multiple or one large moonpool or piled cofferdam will be constructed. As discussed above, the WCS cofferdam construction parameters are not clear.</p>	<p>As above, we advise that the WCS cofferdam construction parameters should be clearly defined and assessed consistently across the relevant documents.</p>	<p>As outlined in comment 5, Application Document 6.2.4.1 Part 4 Marine Chapter 1 Physical Environment has been updated and submitted at Deadline 4 to include the larger cofferdam dimensions and the assessment updated.</p>
5 Section 2.4	<p>Natural England notes that the proposed cofferdams and HDD exit pits will be located within a temporary working area of 21,600m². It is stated that all construction plant and vehicles associated with the trenchless crossing works will be required to remain within this working area at all times, unless the HDD contractor's selected methodology for duct installation is to use a pulled, as opposed to a pushed, method. A pulled duct installation method would require access along the intertidal for placement of duct rollers on the intertidal seabed and potentially extend 1km seaward over a width of 10m. The impact pathways and maximum design scenario (MDS) parameters for the temporary HDD working area, pulled and pushed duct installation methods have not been considered</p>	<p>We strongly advise that all impact pathways and MDS parameters for the temporary HDD working area, and pulled and pushed duct installation methods, need to be considered and assessed in the EIA for marine processes and other ecological receptors. And further innovation to minimise the impacts considered. Such as those used in The Wash for HDD including use of offshore barges to store equipment and avoid need for cofferdams.</p>	<p>The maximum design scenarios have been directly referenced in Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment which has been updated and submitted at Deadline 4.</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
		or assessed in [REP1-052], the Marine Physical Environment chapter.	
6 Sections 3 & 4	Following completion of the HDD, various marine cable pull-in and cable burial (installation) and removal of temporary access activities are proposed which have the potential to impact the marine physical environment in varying degrees. For example, through installation of cofferdams, beaching of the cable laying barge, anchoring, cable rollers, marine cable pull-in, and marine cable burial works. The relevant impact pathways and MDS parameters have not been clearly identified in the ES Marine Physical Environment chapter [REP1-052] or fully considered or assessed fully in the EIA.	As above, we advise that all impact pathways and MDS parameters for the HDD drilling and duct installation parameters need to be clearly identified, considered and assessed in the EIA for marine processes and other ecological receptors.	The maximum design scenarios have been directly referenced in Application Document 6.2.4.1(E) Part 4 Marine Chapter 1 Physical Environment which has been updated and submitted at Deadline 4.
7 Table 2.1	Natural England advises that the deposition location and MDS parameters of material derived from HDD exit pit/cofferdam excavation are unclear in this technical note.	We strongly advise that this needs to be clarified. Storage options should be discussed. Potential impacts such as localised flow and wave moderation and winnowing away of the excavated material should be considered and assessed, accordingly.	The Applicant can confirm that the disposal of all excavated material will be within the Order Limits. This has been assessed accordingly within Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment which has been updated and submitted at Deadline 4.
8 General comment	Natural England is concerned that the works and activities proposed have the potential to mobilise sediments, significantly increase suspended sediment concentrations (SSCs) and sediment deposition in Pegwell Bay and its overlapping nature conservation sites.	We advise that the potential to mobilise sediments, increase SSCs and sediment deposition in Pegwell Bay due to the proposed construction and operation activities should be considered and assessed in an update to the EIA.	Pegwell Bay is a relatively low energy environment in terms of tidal currents with the intertidal sections of the cable route (KP118 to KP120.5) subject to wetting and drying as the tide rises and falls. Sediment disturbed during cable burial will therefore remain in suspension for a limited period before the tide recedes and the majority of any suspended sediment deposited back on the intertidal surface rather than being more widely dispersed. Application Document 9.20.2 Landfall Sediment Modelling Report Pegwell Bay [PDA-038] , explains that peak current velocities in Pegwell Bay are less than 0.1 m/s. Due to the extremely low magnitude of tidal currents within Pegwell Bay, any increase in SSC will result in a short duration 'spike' and similarly the extent of any deposition of sediment on the intertidal surface will be limited. The process described is similar to the natural disturbance of surficial sediments during typical storm conditions and on this basis no further assessment is considered necessary.
9 9.4.2.15	Natural England notes that post-installation protection will be added to stabilise the HDD exits and the top of this protection would be approx. 0.5m below the seabed. However, in [REP1-103] it is stated that at the Kent landfall, a target depth of lowering of 1.5 m will apply to allow for the potential future lowering of the	With regards to cable protection within the shallow nearshore and intertidal waters of Pegwell Bay, Natural England's default advice is for there to be no cable protection placement within the 10m depth contour. We, therefore, advise that this should be secured as a condition.	Please see response to point 4 on Natural England's Advice On: Application Document 9.20.2 Landfall Sediment Modelling Report Pegwell Bay [PDA-038] above which summarises the Applicants position on the likely future morphological changes in Pegwell Bay. As noted in the detailed landfall assessment, Application Document 9.20.2 Landfall Sediment Modelling Report

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
	<p>intertidal bed levels. This would suggest that the depth of HDD exit protection burial would not be sufficient to allow for potential future lowering of the intertidal bed levels. This needs to be clarified.</p> <p>This technical note does not provide details of any other requirements for protection of buried assets within Pegwell Bay. However, owing to potential impacts to marine physical processes and sensitive habitats within the nearshore and inter-tidal areas where the cables make landfall, our standard advice is for there to be no cable protection within the 10m depth contour.</p>	<p>We advise that further information and clarification is needed to demonstrate the adequacy of HDD exit protection depth relative to future lowering of the intertidal bed levels.</p>	<p>Pegwell Bay [PDA-038] historical variations in bed levels along the proposed cable route for the mid to proximal intertidal sections (close to shore) are in the range ± 0.25 m with increased variability of ± 0.5 m in the distal parts of the intertidal zone (further away from shore) at approx. KP119. The final solution will be subject to the Contractor's detailed design and methods engineering. As described in Application Document 9.13: Pegwell Bay Construction Method Technical Note [REP2-011], post-installation protection such as rock bags/concrete mattresses may be added to stabilize the HDD exits (proximal intertidal section), replacing the existing temporary protection. This protection would be buried 0.5m below existing seabed level. The illustrative scenario described in the Technical Note describes the location of the top of the duct approximately 1.1 m below the seabed and the top of the rock bags/mattresses laid on top of the duct as approximately 0.5 m below the seabed.</p>
			<p>The figure below provides an indicative arrangement for the HDD exit and protection in the long term. The primary function of the protection is to ensure safe excavation of the duct end if the cable needs to be replaced in the future. Rock bags are the base case protection. As with the cable through the intertidal area, the HDD exit location will be monitored for scouring / exposure in the long term and can be reburied at a deeper depth if required, noting that the 0.5m depth to the top of protection shown is deeper than variations in seabed level for the upper to mid zone identified in Application Document 9.20.2 Landfall Sediment Modelling Report Pegwell Bay [PDA-038].</p> <p>The diagram illustrates the 'Conceptual Design of landfall duct, cable and protection'. It shows a cross-section of the seabed with a yellow base layer and an orange upper layer. A 'Coffer Dam length 30.00m' is indicated at the top. A 'Rock Bag Protection' layer is shown as a green grid. A 'Duct' is buried in the seabed, and a 'Cable' runs parallel to it. A '0.50m cover over rock bag' is shown above the rock bags. A '1.50m cover over top of duct' is shown above the duct. A '2.50m Indicative minimum depth of excavation for duct end works' is indicated at the bottom. A dashed line represents the original seabed level.</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
			The Applicant cannot commit to a condition of no cable protection placement within the 10 m depth contour due to the presence of the NEMO cable crossing (KP 113.106) which is found shallower than the 10 m contour.
Natural England's Advice On: [REP1-022] 6.11 (B) Marine Conservation Zone Assessment (Tracked)			
1 1.5.271.5.30, England notes that it is stated that no cable protection will be placed within Goodwin Sands MCZ. However, we also note that potential cable protection placement adjacent to the MCZ is not considered in the MCZA. The Offshore Scheme boundary runs adjacent to the boundary of Goodwin Sands MCZ for approximately 3.2 km, between KP107.3 to KP110.5. We advise that if cable protection were to be placed adjacent to the MCZ, it could modify the sediment transport regime and hinder the conservation objectives of the protected features of the MCZ.	1.7.22, 1.7.29 Natural	We advise that the Applicant should clarify whether there is the potential for cable protection to be placed adjacent to Goodwin Sands MCZ over the lifetime of the Project. If the Applicant considers that it is unlikely that cable protection will be required adjacent to the MCZ, then we advise that this should be secured as a condition. If cable protection is considered to be a requirement for cable protection adjacent to the MCZ, then its potential to interrupt or modify sediment transport should be assessed. In turn, consideration should be given to the conservation objectives of the protected features of the MCZ.	<p>Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment has been updated and submitted at Deadline 4.</p> <p>Goodwin Sands is approximately 3.3 km from the cable crossing point at KP 113.1 (Nemo Link) and the Goodwin Sands Sandbanks are approximately 3 km from KP 113.1. Here the following protection may be used with the following dimensions (dependent on specific Crossing Agreements):</p> <ul style="list-style-type: none"> • Mattressing: 0.3 m x 3.0 m x 6.0 m or 0.45 m x 3.0 m x 6.0 m; • No pre-lay berm: 1.0 m (H) x 1.0 m (top) x 7.0 m (base) with 1:3 slope. • Includes pre-lay berm 1.0 m (H) x 1.0 m (top) 10.0 m (base) with 1:3 slope. <p>At these dimensions, the protrusion of the protection above the sea floor will not cause any significant interference with flow dynamics or sediment transport patterns on a scale that would lead to the change in morphology of the Goodwin Sands banks MCZ or the Cross Ledge Sandbanks.</p> <p>While locally some scour is expected to occur around the protection, the hydrodynamic and sediment transport regimes that are associated with development and maintenance of the Goodwin Sands MCZ complex, occur on a regional scale that will not be altered by the presence of low-lying protection. The magnitude of the impact is assessed to be negligible in both cases.</p> <p>Should remedial rock protection be required, or a cable joint be installed together with any associated rock protection, these measures are not expected to have a significant impact on the Goodwin Sands MCZ as the specifications of remedial protection or joint cable protection will be designed to a similar or small scale and therefore are assessed to have no significant impact on the Goodwin Sands MCZ.</p>
Natural England's Advice On: [REP1-072] 6.6 (C) Report to Inform Habitats Regulations Assessment (Tracked)			
1 Section 3.14 We note that the conservation objectives and environmental vulnerabilities for the Thanet Coast SAC have been updated in this section. These have been based on 2015 information.		We refer the Applicant to Natural England's Designated Sites View website for our most recent guidance and conservation	Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment has been updated and

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
	However, we would advise that the most up-to-date information should be considered.	advice on Thanet Coast SAC (see Designated Sites View) and assessments updated accordingly	submitted at Deadline 4 which takes into account this source of information.
2 7.3.67	We note that the Applicant does not anticipate that physical disturbance would have any AEoSI on the qualifying features of the Thanet Coast and Sandwich Bay SPA and Ramsar. However, owing to uncertainties regarding potential risks due to cable installation at the Kent landfall, as detailed in our comments above, we are unable to agree with the conclusions drawn.	As discussed in our advice on [REP1-108], [PDA-038], and [REP1-052] above, further information and clarification is needed on potential physical disturbance to the intertidal and subtidal mud/sand flats in Pegwell Bay and, in turn, qualifying SPA and Ramsar features due to cable installation activities.	As above, the disturbance of intertidal and nearshore seabed is assessed to have no significant impact on nearshore hydrodynamics, sediments, sediment transport, and morphology when construction activities are considered individually and in-combination. As natural sediment transport driven by tidal action is sufficient to 'smooth-out' any variations in the seabed caused by all nearshore temporary activities, returning the bed to equilibrium conditions.
3 3 7.3.75	Please see our advice on [AS-007] above regarding the potential for introduction and spread of INNS due to placement of concrete mattresses at the trenchless entry/exit points in the upper and intertidal mud/sandflat areas at the Kent landfall, and the use of a moonpool or prefabricated cofferdam.	Further clarification is needed.	
4 Appendix F	We note that there is a cover page included for Appendix F Technical Note: Hydrological Impacts at Kent Landfall, however, the appendix does not appear to be attached.	Natural England requests that this technical note/appendix is submitted into examination for further review given the highrisk issues raised in our written representations.	The Applicant confirms that this missing information was submitted at Deadline 3 as Application Document 6.6 (E) Habitats Regulations Assessment Report [REP3-029] .
Natural England's Advice On: [REP1-103] 7.5.3.2 CEMP (B) Appendix B Register of Environmental Actions and Commitments (REAC)			
1 MPE02	<p>As advised on [PDA-038] above, the Applicant's landfall assessment highlights several potentially significant risks to adequate cable burial and siting of landfall infrastructure (e.g. Transition Joint Bay) over the lifetime of the Project. These include:</p> <ul style="list-style-type: none"> • Continued migration of the River Stour channel northwards towards the cable route • Erosion and flooding potential of the cable corridor area at the coastline • Future changes to the drivers of sediment transport in the area (e.g. tidal currents, wave climate, nearshore shoals, and banks) • Climate change effects (e.g. mean sea level rise, increased erosion rates, shoreline retreat) • Future shoreline management policy changes. We are, therefore, concerned that the target Depth of Lowering of 1.5 m 	<p>We advise that, based on the uncertainties and potential risks to future cable burial success at Kent landfall, that the target DOL may not be sufficient and further assurance is needed to demonstrate that landfall infrastructure and construction activities will not be affected by morphological change over the project lifetime and vice versa.</p>	<p>Please see response 4 in Natural England's Advice On: Application Document 9.20.2 Landfall Sediment Modelling Report Pegwell Bay [PDA-038].</p> <p>Please see response 9 in Natural England's Advice On: Application Document 9.13 Pegwell Bay Construction Method Technical Note [REP1-108].</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
	at the Kent Landfall may not be sufficient to accommodate potential future lowering of intertidal bed levels.		
2 MPE06	We welcome the Applicant's commitment to carry out monitoring of the beach profile and erosion rates at the Suffolk landfall site over the operational lifetime of the Proposed Project. However, we would wish to see the same commitment for the Kent landfall.	We advise that a similar commitment is made for monitoring of change at the Kent landfall intertidal elevation and coastline over the operational lifetime of the Proposed Project. Details should be provided in an In Principle Monitoring Plan with the commitment to undertake remediation actions should impacts beyond what was predicted be observed.	<p>The Applicant can confirm that its approach to post-installation monitoring is outlined within Application Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4. This includes monitoring for engineering purposes to ensure that target depth of lowering has been achieved across the Offshore Scheme and to identify any future instances of cable exposure.</p> <p>The Applicant has also included Commitment MPE06 in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] to monitor, over the operational lifetime of the Proposed Project, the beach profile and erosion rates at the Suffolk landfall site where rock bags are planned to be placed at the HDD exit pits. This is a very specific commitment relating to erosion at the Suffolk landfall.</p> <p>The Applicant has not committed to preparing an IPMP at this stage for either landfall. Commitment BE06 in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] commits the Applicant to preparing an IPMP, in consultation with the MMO and SNCBs, where habitats of principal importance are identified during pre-construction survey and there is potential for a significant effect on these habitats that triggers the requirement for a Benthic Mitigation Plan (BMP) as set out in Commitment BE05.</p> <p>The Applicant confirms that is currently reviewing the REAC and associated Requirement 6 in light of the points raised at the ISH2, and we propose to ameliorate that drafting such that the provisions raised at the hearing are appropriately secured in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) which will be submitted at Deadline 4A.</p>

Table 3.4 Applicant's Comments on the Natural England F3 Deadline 3 Submission [REP3-119]

Reference Section	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
Application Document 7.5.11 Outline Marine Mammal Mitigation Plan (MMMP) [REP1-026]			
1 N/A	The purpose of the MMMP is to serve as a concise, user-friendly protocol outlining the specific mitigation measures that must be implemented in the	Restructure the MMMP so it is more concise and user-friendly.	The Applicant notes the suggestions and highlights the current document is an outline plan, which will

Reference Section	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
	<p>field for activities that may impact marine mammals. To maintain clarity and focus, sections on legislation, project details unrelated to the MMMP, and general marine mammal descriptions should not be included in this document, as they are more appropriately placed in the Marine Mammal EIA chapter or other supporting materials. Instead, the MMMP should concentrate on clearly presenting mitigation measures, operational procedures, observer responsibilities, and reporting requirements. The MMMP represents the practical outcome of the assessments conducted during the EIA process.</p>		<p>be updated to a full and detailed MMMP post-consent.</p> <p>Application Document 7.5.11 (C) Outline Marine Mammal Mitigation Plan (MMMP) submitted at Deadline 4 has been updated to remove paragraph 1.3.18 but reference to the main legislation in relation to cetaceans designated as European Protected Species (paragraph 1.3.17) has been left in. The Applicant recommends reference to this important piece of legislation remains in the document since it clearly sets out the legal obligations of any contractors undertaking works at any stage of the project, in relation to injury and disturbance in marine mammals.</p>
2	1.8.3	It is not clear what mitigation measures should be implemented by the Environment Advisor/ Manager.	Reference to all onshore project elements have also been removed as these are not relevant to a MMMP. Similarly, a brief description of the activities of relevance are mentioned to inform the marine mammal observers and others of the specific activities that require the mitigation. During works that require implementation of the MMMP measures, the ES chapter is unlikely to be available for further reference for the MMObs/PAMS operators on board. Therefore, additional information has been provided in the Application Document 7.5.11 (C) Outline Marine Mammal Mitigation Plan (MMMP) submitted at Deadline 4 for reference.
2	1.8.3	More clarity needed.	The role of the EA/M is an overall project coordination role but is unlikely to implement mitigation measures and so this role has been removed from Application Document 7.5.11 (C) Outline Marine Mammal Mitigation Plan (MMMP) submitted at Deadline 4. Other roles not relevant to the specific mitigation measures or implementation of the CEMP have also been removed. The final MMMP will be delivered post-consent.
4	1.9.4	We note that Offshore Passive Acoustic Monitoring (PAM) will be used in the hours of darkness or reducing visibility and aimed to detect only harbour porpoise vocalisation. This is not sufficient as other marine mammals (seals and other cetaceans) may be present in the area.	Further information is required regarding how the mitigation zone will be monitored effectively during the hours of darkness or limited visibility.
5	1.10.3	<p>This comment is just to note at the moment and should be considered for the UXO specific MMMP.</p> <p>Please ensure the updated UXO Joint Position Statement and guidance from Jan 2025 is taken into account, to inform the UXO MMMP:</p>	The Applicant confirms that Application Document 7.5.11 (C) Outline Marine Mammal Mitigation Plan (MMMP) submitted at Deadline 4 includes reference to the JNCC guidance for UXO clearance (JNCC, 2025) and reference to the UXO Joint Position Statement has also been added. The Applicant confirms these guidance documents will

Reference Section	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
		Marine environment: unexploded ordnance clearance Joint Position Statement - GOV.UK	be used in the assessment of any necessary UXO clearance which will be the subject of a separate Marine Licence Application post-DCO consent.

Table 3.5 Applicant's Comments on the Natural England Deadline 3 Submission [REP3-120] – Appendix H3 Suffolk Landscape Visual Impact Assessment (LVIA)

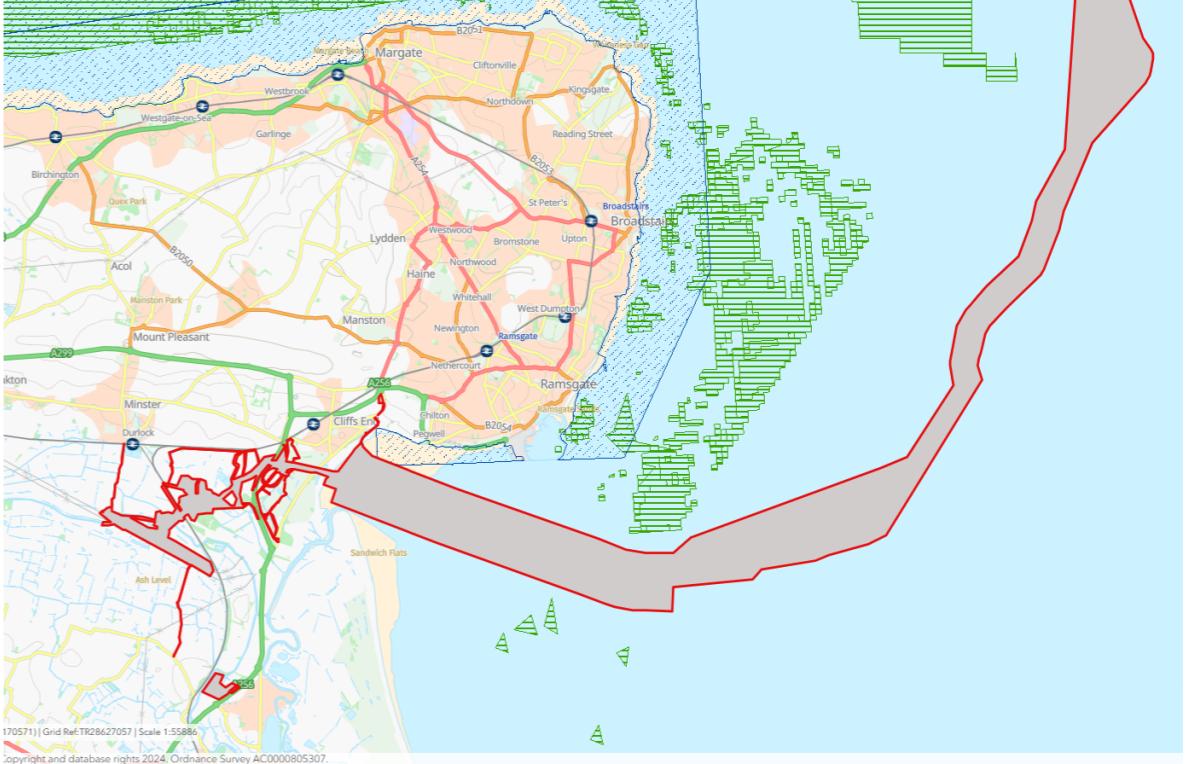
Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
Natural England's Detailed Advice On: Suffolk LVIA			
Document reviewed: [REP1-120] 9.47 National Landscape Section 85 Duty Technical Note			
1 EX1.03	<p>The total area of land within the Area of Outstanding Natural Beauty (AONB) which would be temporarily affected during construction would be 7.61 ha of which 91% is comprised of acid grassland.</p> <p>A proportion of this area (4.05 ha) has been disturbed and reprofiled due to the expansion of the adjacent golf course.</p>	<p>It is not clear if the 4.05 ha of land within the extended golf club will be able to be reinstated. Will this area remain in operation as a golf course following reinstatement?</p> <p>It is not clear how the golf course proposals have been considered in combination with the proposal.</p> <p>Natural England Advises further evidence to be provided on address the above points.</p>	<p>Refer to Table 15.1 in Application Document 9.36 Applicant's Comments on Other Submissions Received at Deadline 2 [REP3-064]. The golf course has already delivered its proposals within and adjacent to the Order Limits which (within the Order Limits) consists primarily of planting trees and gorse within the grassland (which as discussed with Natural England is not 'Priority Habitat' in terms of botanical quality and in fact has not been classified as acid grassland at all in the golf course botanical surveys due to its degraded state). The cable route in this area will be restored to the existing condition which will include restoration of acid grassland, some scrub species and occasional trees. This is anticipated would be a requirement of the golf club, with the restored cable corridor managed for a five-year duration.</p> <p>Whether the area will remain in operation as a golf course following reinstatement is a matter for the golf club, but the Applicant assumes the golf club will want to continue this use.</p>
2 Ex1.0.4	<p>Natural England notes that due to the two-year lag-time following reinstatement before functional acid grassland is restored, and possibly a slightly longer time-period before all the grassland matures, a parcel of land has been identified in the Order Limits in which a 6 ha area of acid grassland would be enhanced and subsequently maintained for a 10 year period. This would provide a net enhancement of at least 6 ha.</p> <p>Whilst this is welcomed it remains unclear to Natural England what habitats are present in the identified 6Ha and how these will be enhanced. The area identified appears to contain deciduous woodland. How much acid grassland will be enhanced in this area?</p>	<p>Natural England advises that further consideration of the suitability of the enhancement area and the management measures required to achieve success and over what duration given the concerns we raise in the following point regarding the duration of the impact. Ideally, a standalone enhancement area implementation and management plan would be submitted into examination.</p>	<p>The Applicant responded to comments on Application Document 9.47 National Landscape Section 85 Duty Technical Note [REP1- 120] regarding acid grassland proposals in Table 15.1 within Application Document 9.36 Applicant's Comments on Other Submissions Received at Deadline 2 [REP3-064].</p> <p>Details on the acid grassland restoration and management are already contained in Application Document 7.5.7.1 (B) Outline Landscape and Ecological Management Plan – Suffolk [CR1-045] and would be expanded upon as necessary for the detailed Landscape and Ecological Management Plan (LEMP) to be produced under Requirement 6 of Application Document 3.1 (F) Draft Development Consent Order [REP3-006]. Therefore, it is considered that in the interests of keeping all habitat creation and management proposals in one place for ease of discharge by the Local Planning Authority and delivery by contractors, there is no need for a production of a separate standalone enhancement area implementation and management plan for the proposed acid grassland area as this is already covered and secured by the LEMP.</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
		<p>It remains unclear how the Applicant has considered impact pathways from the pig farm on the potential for reinstatement of the acid grassland. Please see our comments provided in Appendix titled 'Landscape and Visual Impacts including reference to documents included in REP1-120 regarding acid grassland proposals' at Deadline 2.</p> <p>It is unclear what the baseline pH is for this area and what impact inputs from the recently cultivated area adjacent to the 6Ha parcel may have on successful enhancements.</p> <p>We advise that an explanation of how 10 years is a sufficient length of time in which to manage this area to a sufficient standard to compensate for direct impacts to acid grassland in the Protected Landscape.</p> <p>We query why this area is not maintained for the lifetime of the project.</p> <p>We advise there is insufficient evidence presented to support the conclusions that this area would be fit for purpose as compensation for acid grassland impacts.</p>	
3 Ex1.0.4	<p>Natural England highlights that additional information is required regarding the temporal (2 years) nature of the impact and how this has been substantiated.</p> <p>The LVIA assumes that the impact of habitat removal here is temporary (2 years) We advise that the complexity of this habitat some of which is priority habitat and added risks of reinstatement, including time to reach functionality, (which would affect the temporal nature of the impact in LVIA) should be acknowledged and assessed in the LVIA.</p> <p>It remains unclear which areas will be impacted and reinstated and reprofiled (4.05 ha) impact any reinstatement potential in this area? The</p>	<p>Natural England advises that further consideration of acid grassland recovery is required in order to support the conclusions on the duration of the impact</p>	<p>The LVIA assumes that the impact of habitat removal during the construction period is temporary and acknowledges the two to four year period in which functional acid grassland would be restored and subsequently matures (Appendix A 1LVIA9 Natural Beauty Indicators and their Sub-Factors contained within Application Document 9.73.1 Applicant's Responses to First Written Questions – Appendices [REP3-070]). This is still short-term when considering the duration of change set out in the LVIA methodology (Application Document 6.3.2.1.A ES Appendix 2.1.A Landscape and Visual Impact Assessment and Photomontage Methodology [APP-095]).</p> <p>Refer to Table 15.1 in Application Document 9.36 Applicant's Comments on Other Submissions Received at Deadline 2 [REP3-064] for further information regarding the golf course proposals and the semi-improved acid grassland to the west of Leiston Road. The LVIA considers the golf course expansion as part of the baseline and consequently not forming part of an in-combination assessment.</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
	golf course proposals are not clearly included as in-combination assessment in the project.		
4 Ex1.0.5 and Table 3.41	<p>The proposed acid grassland enhancement within the designated landscape is considered to target the Natural Beauty and Special Qualities indicators of the Suffolk & Essex Coast & Heaths AONB.</p> <p>We continue to advise that in accordance with the mitigation hierarchy and the importance of this habitat landscape in both landscape, and ecological terms, the project should avoid sensitive habitats and employ trenchless techniques in this area.</p> <p>Document: 6.3.2.1.C highlights that acid grassland is an important defining element of natural beauty for the Suffolk & Essex Coast & Heaths National Landscape.</p> <p>It is not clear which Special Qualities and Indicators will be targeted by the acid grassland enhancement. Table 3.2 does not contain clear evidence to substantiate this. (Please see further comments below regarding table 3.41).</p> <p>The current baseline of the 6Ha enhancement area appears to include priority deciduous woodland habitat and biodiversity interest, it is not clear how the enhancement proposals may themselves impact on an area of existing value for biodiversity.</p> <p>The baseline, scope for enhancement and target condition are not detailed in the assessment material.</p> <p>For example, plates depicting target habitats in the Document 6.3.2.2.A Part 2 Suffolk Chapter 2 Appendix 2.2.A do not include this area.</p>	<p>Natural England advises that further consideration of the suitability of the enhancement area and the management measures required to achieve success and over what duration given the concerns we raise in the following point regarding the duration of the impact. Ideally, a standalone enhancement area implementation and management plan would be submitted into examination.</p>	<p>Refer to Table 15.1 in Application Document 9.36 Applicant's Comments on Other Submissions Received at Deadline 2 [REP3-064]. To use a trenchless technique along the small area of priority habitat acid grassland would involve extending the duration of works close to Sandlings SPA and Leiston-Aldeburgh SSSI. This is considered less desirable than the much shorter timescale of open trenching through the acid grassland.</p> <p>Tables 3.2 and 3.3 within Application Document 9.47 National Landscape Section 85 Duty Technical Note [REP1-120] is considered to clearly set out the relevance of the proposed acid grassland enhancement works for each of the Natural Beauty and Special Qualities Indicators. The Applicant has requested further detail on additional information required from Natural England.</p> <p>Details on the acid grassland restoration and management are already contained in Application Document 7.5.7.1 (B) Outline Landscape and Ecological Management Plan – Suffolk [CR1-045] and would be expanded upon as necessary for the detailed Landscape and Ecological Management Plan (LEMP) to be produced under Requirement 6 of Application Document 3.1 (F) Draft Development Consent Order [REP3-006]. Therefore, it is considered that in the interests of keeping all habitat creation and management proposals in one place for ease of discharge by the Local Planning Authority and delivery by contractors, there is no need for a production of a separate standalone enhancement area implementation and management plan for the proposed acid grassland area as this is already covered and secured by the LEMP.</p> <p>For further details on duration of impact, the Applicant's response to 1ECOL21 within Application Document 9.73 Applicant's Responses to First Written Question [REP3-069] should be referred to.</p>
5 Ex1.0.5 (cont'd)	<p>Natural England notes that the proposed acid grassland enhancement within the AONB has multifunctional purposes to further the purpose of the AONB, notably including landscape, ecology and Biodiversity Net Gain.</p> <p>As above we consider avoidance of impact to be key here.</p> <p>The report clarifies that the 6 Ha proposed enhancement area is less than the area impacted by the scheme.</p> <p>It is not clear how this area achieves multifunctional purposes. This appears to be</p>	<p>We advise that the assessment of impact must have clear auditing of baseline (including the 6Ha area), measures to avoid impact (in line with the mitigation hierarchy), mitigation to reduce impact and where impacts are unavoidable, compensation. And this should be used to determine the targeted function of the 6ha of land ensuring that it is fit for purpose.</p>	<p>Refer to Table 15.1 of Application Document 9.36 Applicant's Comments on Other Submissions Received at Deadline 2 [REP3-064].</p> <p>Application Document 9.47 National Landscape Section 85 Duty Technical Note [REP1-120] sets out the reasoning as to how the Proposed Project meets this duty to further the purpose of the Suffolk and Essex Coast and Heath Area of Natural Beauty (SECHAONB) to conserve and enhance natural beauty. The enhancement of the area of land within the AONB will contribute to aspirations within the SECHAONB Management Plan (2023). This includes providing for nature recovery, local distinctiveness to be conserved and enhanced, and increasing biodiversity. The enhancement also links to a SECHAONB contribution to the Protected Landscapes Targets and Outcomes Framework for restoring or creating wildlife-rich habitats in Protected Landscapes outside of protected sites.</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
	<p>conflated. Clarification is therefore required regarding the targeted function of the 6ha land. It appears that this 6Ha area would form part of compensation for direct impacts to acid grassland. However it is not connected to the area of impact and appears to already contain habitats of biodiversity interest. Furthermore, mitigation, compensation and enhancement need to be considered with Biodiversity Net Gain considered after this. We reiterate that the impact assessment does not appear to consider severance of acid grassland habitat. It is of key importance not to conflate Biodiversity Net Gain (BNG) with the requirements of the mitigation hierarchy. Each require a clear audit trail. Furthermore, BNG is required to be secured for 30 years, and this land is only secured for 10 years. Therefore, it would not qualify for BNG.</p>		<p>Severance is not considered relevant for acid grassland in this context as the construction of the HVDC cables would be temporary and would occur over a short duration with the land promptly reinstated. Similarly, it is not considered that fragmentation or isolation of acid grassland habitat would occur either. Within the context of landscape character, consideration of habitat severance would typically occur where a development could affect a very large corridor such that it would alter the perception of the character of the landscape. Within the AONB, 7.61 ha of acid grassland would be temporarily affected which is not considered to result in severance of habitat within the SECHAONB.</p> <p>Severance is not referred to explicitly within the published information on the SECHAONB Natural Beauty and Special Qualities Indicators. The Natural Beauty Indicator 'Landscape Quality' does note the 'intactness of the landscape in visual, functional and ecological perspectives' which has been considered within the assessment in terms of the temporary impacts of acid grassland within the SECHAONB.</p> <p>Whilst biodiversity is noted as part of the multifunctional enhancement within Application Document 9.47 National Landscape Section 85 Duty Technical Note [REP1-120], this is considered separate to calculations of Biodiversity Net Gain which require 30 years. For further details on duration of impact, refer to the Applicant's response to 1ECOL21 within Application Document 9.73 Applicant's Responses to First Written Question [REP3-069].</p>
6 Ex1.0.6	<p>We note that the Applicant has determined that because there are no likely significant effects on the AONB from the Suffolk Onshore Scheme (alone), any significant inter-project cumulative effects are only likely for a short and temporary period, and there would be an overall increase in the extent and quality of acid grassland habitat within the AONB due to the enhancement proposed and secured, the s85 duty to seek to further the purposes of the AONB has been complied with.</p> <p>From the information provided we do not concur that the 6Ha proposals seek to further the purposes of the AONB.</p> <p>We continue to advise that there is insufficient evidence used to justify that the impacts to acid grassland are small scale. We await additional information from the applicant to demonstrate this.</p> <p>We continue to advise that it is not clear how the special qualities and indicators of the Suffolk and Essex Coast and Heaths National Landscape have been assessed and how a</p>	<p>As detailed in previous points above we advise that multifunctional purposes should be clearly evidenced/audited from the assessment material provided in support of the application.</p> <p>We advise that the mitigation hierarchy applies to each stage of the assessment of impact and that clear justification of why avoidance of impact is not achievable, should be provided.</p> <p>The LVIA Assessment requires additional detail and evidence regarding choice of location, detail of baseline, management proposed and certainty of success.</p> <p>Furthermore, should the short (10 year) proposals for these areas provide an increase in acid grassland this would be for a temporary period and ongoing plans for this area post 10 years should be provided.</p>	<p>Refer to Table 15.1 of Application Document 9.36 Applicant's Comments on Other Submissions Received at Deadline 2 [REP3-064]. To use a trenchless technique along the small area of priority habitat acid grassland would involve extending the duration of works close to Sandlings SPA and Leiston-Aldeburgh SSSI. This is considered less desirable than the much shorter timescale of open trenching through the acid grassland.</p> <p>The Applicant considers that the multifunctional purposes are clearly set out within Application Document 9.47 National Landscape Section 85 Duty Technical Note [REP1-120] and has requested further explanation on how this could be demonstrated in any greater detail from Natural England at a meeting on 22 January 2026.</p> <p>Appendix A 1LVIA9 Natural Beauty Indicators and their Sub-Factors contained within Application Document 9.73.1 Applicant's Responses to First Written Questions – Appendices [REP3-070] provides further detail on how the sub-factors of the Natural Beauty Indicators have the potential to be affected by the Proposed Project. This is a combination of information from Table 2.1 within Application Document 6.3.2.1.C ES Appendix 2.1.C Landscape Designation and Landscape Character Assessment [APP-097] with further clarity provided on the potential effects arising from the Suffolk Onshore Scheme for each of the sub-factors listed within the LDA Design Suffolk Coast and Heaths Area of Outstanding Natural Beauty (AONB) Natural Beauty and Special Qualities Indicators V1.8 2016 document. This demonstrates that the non-significant effects reported within Table</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
	<p>conclusion of no likely significant effects has been substantiated.</p> <p>Natural England continues to advise that we do not agree that impacts in relation to small geographical extents can moderate impact to statutory purposes</p> <p>We advise that all the above limits the opportunities of the enhancement area. Therefore, it is not clear how the 6Ha area would be considered as seeking to further the purposes of the National Landscape.</p>	<p>2.1 of Application Document 6.3.2.1.C ES Appendix 2.1.C Landscape Designation and Landscape Character Assessment [APP-097] at construction and operation (and maintenance) remain justified. An addendum to the Planning Statement is being submitted at Deadline 4 (Application Document 9.94 Planning Statement Addendum submitted at Deadline 4) to include the Special Qualities Indicators baseline and further detail relating to the assessment.</p> <p>The 6 ha parcel of acid grassland enhancement will be maintained for a 10 year period after which it will be returned to the landowner. This will provide an overall increase in the extent and quality of acid grassland habitat for the 10 year period.</p> <p>The Applicant considers that the approach taken in Application Document 9.47 National Landscape Section 85 Duty Technical Note [REP1-120] is proportionate and appropriate given the fact that there are no likely significant effects on the SECHAONB from the Proposed Project and any significant inter-project cumulative effects are only likely for a short and temporary period. The Applicant therefore considers that the s85 duty to seek to further the purposes of the SECHAONB has been complied with.</p>	
7 1.2.3	<p>The Planning Statement (Application Document 7.1 Planning Statement [AS-057]) provided an assessment on each of the Special Qualities Indicators. However, Natural England notes that the baseline for the Special Qualities from the 2016 published document was not presented within this assessment. Those points relevant to landscape and visual matters were included in the landscape baseline appendix (Application Document 6.3.2.1.B ES Appendix 2.1.B Landscape Baseline [APP-096]).</p> <p>We advise that the referenced Planning Statement does not provide a detailed appraisal of the impact of the scheme on the special qualities of the Protected Landscape.</p> <p>In addition, the referenced Planning Statement refers back to Document: 6.3.2.1.C Part 2 Suffolk Chapter 1 Appendix 2.1.C Landscape Designation and Landscape Character Assessment – Suffolk for a full assessment. We continue to advise that Document 6.3.2.1.C does not appear to include a full assessment of impacts on special qualities as set out in the Management Plan.</p> <p>This is because the table does not clearly include the full suite of Special Quality indicators and accompanying narrative/evidence informing assessment parameters and evidence to substantiate conclusions made.</p>	<p>Natural England advises that the planning statement and relevant documents are updated accordingly.</p>	<p>An addendum to the Planning Statement is being submitted at Deadline 4 (Application Document 9.94 Planning Statement Addendum submitted at Deadline 4) to include the Special Qualities Indicators baseline and further detail relating to the assessment.</p> <p>Appendix A 1LVIA9 Natural Beauty Indicators and their Sub-Factors contained within Application Document 9.73.1 Applicant's Responses to First Written Questions – Appendices [REP3-070] provides further detail on how the sub-factors of the Natural Beauty Indicators have the potential to be affected by the Proposed Project. This is a combination of information from Table 2.1 within Application Document 6.3.2.1.C ES Appendix 2.1.C Landscape Designation and Landscape Character Assessment [APP-097] with further clarity provided on the potential effects arising from the Suffolk Onshore Scheme for each of the sub-factors listed within the LDA Design Suffolk Coast and Heaths Area of Outstanding Natural Beauty (AONB) Natural Beauty and Special Qualities Indicators V1.8 2016 document. This demonstrates that the non-significant effects reported within Table 2.1 of Application Document 6.3.2.1.C ES Appendix 2.1.C Landscape Designation and Landscape Character Assessment [APP-097] at construction and operation (and maintenance) remain justified.</p>


Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
	<p>As previously advised the detailed/comprehensive assessment of the impact of the project on what makes the receiving landscape special is not clearly presented.</p> <p>The assessment relies on temporality of impact which we continue to advise requires substantiation.</p> <p>We continue to advise that the conclusion that that the effect is localised/small scale again is not clearly substantiated and is not applicable to LVIA assessment as the impact on place is key.</p> <p>This evidence is crucial to the assessment because it has been used to moderate the Applicants conclusion on the magnitude of effect on special qualities.</p> <p>Natural England does not agree that impacts in relation to small geographical extents can moderate impact to statutory purposes.</p>		
8 2.1.1	<p>Natural England notes that the AONB and its setting were considered in the early stages of the routeing and siting for the Suffolk Onshore Scheme. However, it is not clear how the impact of the project on the setting of the Protected Landscape has been assessed.</p>	<p>Natural England advises that further detail is included on the impact of the scheme in its entirety, including impact of trenchless crossings into the setting. This is not limited to the location of the converter station/landing site.</p>	<p>The Landscape and Visual chapter (Application Document 6.2.2.1 Part 2 Suffolk Chapter 1 Landscape and Visual [APP-048]) refers to the 'Development in the setting of the Suffolk Coast & Heaths Area of Outstanding Natural Beauty (AONB) Position Statement' document published by the Suffolk and Essex Coast and Heaths National Landscape Partnership (SECH Partnership) in 2015. This notes that the setting of the SECHAONB is not fixed and it is specific to the development as to whether it would influence the Natural Beauty and Special Qualities Indicators of the AONB.</p> <p>Part of the Proposed Project is located within the SECHAONB and the potential for significant adverse effects on the setting is very limited due to the temporary nature of the construction activity and the positioning of the Suffolk Converter Station site located away from the SECHAONB to limit potential effects on the setting. The assessment therefore focuses on the direct effects with consideration of the setting with respect to indirect effects. As noted within the assessment contained within Application Document 6.3.2.1.C ES Appendix 2.1.C Landscape Designation and Landscape Character Assessment [APP-097] setting, as an indirect effect, is addressed for each Natural Beauty Indicator where relevant.</p> <p>The indirect effects on the SECHAONB are limited, especially at operation (and maintenance), as they are restricted to intervisibility with the cable laying barge out at sea and as the HVDC cable laying continues to the north-west through the landscape outside of the SECHAONB boundary. This includes:</p> <p>A temporary effect on the scenic quality of the SECHAONB related to offshore views from the coastline;</p> <p>A temporary effect on the relative wildness of the SECHAONB relating to the introduction of elements of uncharacteristic machinery and noise; and</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments
			<p>A temporary effect on the relative tranquillity of the SECHAONB relating to additional human activity, increased traffic along local roads and machinery.</p> <p>The limited vegetation removal outside of the SECHAONB associated with the HVDC cable laying is largely temporary and would be limited to typical hedgerow and tree vegetation within an agricultural landscape. This removal is not referred to within the assessment on the SECHAONB as it is not considered to give rise to effects on the Natural Beauty Indicators. For example, in relation to scenic quality, as the vegetation temporarily removed would be limited the influence on the pattern and composition of vegetation types would not be perceptible.</p> <p>It should be noted that a request to separate out the assessment of the setting of the SECHAONB has not been raised during the pre-application stage from any stakeholders, including Natural England and the National Landscape Partnership. It should also be noted that the site selected for the proposed Saxmundham Converter Station site was influenced by Scoping comments from Natural England to avoid effects on the setting of the AONB (Application Document 6.15 Scoping Opinion 2022 [APP-300]).</p> <p>It is noted in the assessment that construction activity associated with the Saxmundham Converter Station or Friston Substation (under Friston Scenario 2) is not likely to be perceptible from the SECHAONB other than in a very localised area of the SECHAONB (refer to representative viewpoint 18 assessment within Application Document 6.3.2.1.D Appendix 2.1.D Visual Amenity Baseline and Assessment [APP-098]). It should also be noted that at 6.3.1.2 of the Application Document Local Impact Report [REP1-128] from East Suffolk Council, it is stated that "<i>the proposed converter station site lies to the east of the town and is detached from the setting of the National Landscape</i>".</p>
9 3.4.1	<p>Table 3.2 and Table 3.3 set out how the acid grassland enhancement works respond to the Natural Beauty and Special Qualities Indicators along with the effects at each stage of the Suffolk Onshore Scheme. For the Suffolk Onshore Scheme alone, there are no significant adverse effects on the Natural Beauty and Special Qualities of the AONB.</p>	<p>As above we advise that further narrative and evidence regarding special qualities is required in order to substantiate the conclusions in this table, and that the avoidance of impact to acid grassland via HDD should fully assessed.</p> <p>Furthermore, the project is relying on successful establishment of this habitat. Therefore, the assessment should consider the risks of establishment with the ongoing farming/ agricultural practices directly adjacent to the scheme and lack of information on baseline data.</p> <p>Furthermore, we advise that the land is consideration is given to the land being secured for beyond 10 years.</p>	<p>An addendum to the Planning Statement is being submitted at Deadline 4 (Application Document 9.94 Planning Statement Addendum submitted at Deadline 4) to include the Special Qualities Indicators baseline and further detail relating to the assessment.</p> <p>Appendix A 1LVIA9 Natural Beauty Indicators and their Sub-Factors contained within Application Document 9.73.1 Applicant's Responses to First Written Questions – Appendices [REP3-070] provides further detail on how the sub-factors of the Natural Beauty Indicators have the potential to be affected by the Proposed Project. This is a combination of information from Table 2.1 within Application Document 6.3.2.1.C ES Appendix 2.1.C Landscape Designation and Landscape Character Assessment [APP-097] with further clarity provided on the potential effects arising from the Suffolk Onshore Scheme for each of the sub-factors listed within the LDA Design Suffolk Coast and Heaths Area of Outstanding Natural Beauty (AONB) Natural Beauty and Special Qualities Indicators V1.8 2016 document. This demonstrates that the non-significant effects reported within Table 2.1 of Application Document 6.3.2.1.C ES Appendix 2.1.C Landscape Designation and Landscape Character Assessment [APP-097] at construction and operation (and maintenance) remain justified.</p> <p>With regards to the proposed area of acid grassland enhancement being secured for longer than 10 years, refer to Table 15.1 within Application Document 9.36</p>

Ref Section / Para	Key Concern and/or Update	Natural England's Advice to Resolve Issue	Applicant's Comments	
		Applicant's Comments on Other Submissions Received at Deadline 2 [REP3-064].		

Table 3.6 Applicant's Comments on the Natural England Appendix J3A [REP3A-028]

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
Natural England's Advice On: Kent Landfall - intertidal and benthic ecology relating to the Kent landfall Document reviewed: 6.6 (E) Habitats Regulations Assessment Report [REP3-028].				
1	N/A	Natural England notes that there is no link to a Horizontal Directional Drill (HDD) Management plan or a landfall management plan to assess impacts from a yet undefined number of vehicles moving across the intertidal mudflats which is supporting habitat for SPA birds and is likely to succession into saltmarsh habitat.	Natural England advises that in order to fully consider the potential impacts from cable installation and/or repair replacement of cables on intertidal habitats and protected species which rely on this habitat, vehicles transiting the intertidal should be considered in full.	<p>Potential effects of vehicles transiting the intertidal area have been assessed in the following:</p> <p>Application Document 6.2.4.1 Part 4 Marine Chapter 1 Physical Environment [TBC] submitted at Deadline 4;</p> <p>Application Document 6.2.4.2 Part 4 Marine Chapter 2 Benthic Ecology [TBC] submitted at Deadline 4;</p> <p>Application Document 6.2.4.5 Environmental Statement Part 4 Marine Chapter 5 Marine Ornithology [REP2-003]; and</p> <p>Application Document 6.4.4.5 Environmental Statement Figures Marine Ornithology [TBC] submitted at Deadline 4.</p> <p>These assessments include consideration of vehicle types, numbers and daily movements within the intertidal area and potential for disturbance to intertidal mudflats. All assessments conclude that there will be no significant impacts.</p> <p>To avoid vehicles becoming stranded in the intertidal area, all vehicles will have low bearing pressure. This will also further reduce the potential for any disturbance to the intertidal mudflats. The use of low-pressure bearing vehicles will be included in an update to commitment B67 in the REAC and/or relevant control document at the next appropriate deadline (Deadline 4A for the REAC).</p> <p>As set out in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] to further reduce the potential for any impacts on the saltmarsh habitat, the Applicant has also committed to the following:</p> <p>B67 – Commitment to no vehicle or pedestrian access across saltmarsh and access routes across mudflats informed by pre-construction saltmarsh habitat survey.</p> <p>B68 - Pegwell Bay Construction Method Statement in consultation with NE and KWT covering all activities in Pegwell Bay.</p>
2	3.7.1	Natural England notes that within Thanet Coast SAC there is continuous chalk, which is likely to be sub-cropping, and is likely to be damaged and/or lost during cable installation and operation activities.	Natural England advises that further assessment of not only impacts to this irreplaceable habitat, but also impacts which may arise from measures used to ensure that the cable remains buried.	The Sea Link LOD is completely outside the Thanet Coast SAC and the Thanet Coast MCZ, both of which have chalk reef as a designating feature. Therefore, there will be no cable placed within this feature protected by these two designated sites. However, the chalk reef does continue beyond the boundary of both sites. Mapping the distribution of chalk reef (see Figure below of Sea Link LOD and chalk reef distribution from WFD mapping data on Magic.gov.uk) shows that the LOD for

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
				<p>the Sea Link project also completely avoids this habitat mapped outside the designated sites.</p>
3	4.3.4	<p>Natural England notes that assurances are made by the Applicant that a distance of 105-140m between the exit pits and the saltmarsh is sufficient to avoid damage. However, we also note that the working area is only 50m away from the saltmarsh. There is also no consideration of:</p> <ul style="list-style-type: none"> the coastal process impacts from having cofferdams in situ for 120 days. saltmarsh accretion and the implications for operational activities should exit pits no longer be located outside saltmarsh habitats 	<p>Natural England advises that further consideration is required in relation to potential impacts from changes in coastal processes from:</p> <ul style="list-style-type: none"> the presence of infrastructure during installation and possibility of changes in extent of interest features over time. 	<p>Some patches of chalk were observed in vibrocoring samples in this area but was generally sub-surface, as detailed in Application Document 6.3.4.2.A ES Appendix 4.2.A Benthic Characterisation Report (Original Report) [APP-196]. In the LOD therefore, the chalk can be considered a primarily geological feature rather than an ecological habitat as when subsurface it does not support benthic communities.</p> <p>At locations closer to the HDD exit location the chalk was found to be at least 6m below the surface and overlain by clays and silts of the Thanet Formation.</p> <p>Coastal processes</p> <p>Potential effects of the cofferdam on physical processes are limited. There is potential for scour around the cofferdams. However, the extent of any scour will be limited due to the sheltered nature of the bay where the currents in the bay at 0.5 m Ordnance Datum Newlyn (ODN) (elevation of cofferdam installation) are very weak (<0.1 m/s) so scour around these structures will be negligible. Further, at 0.5 m ODN the cofferdams will only be submerged for half the time they are in position.</p> <p>Once cofferdams are removed (120 days) the seabed (mudflats) will naturally recover via natural sediment processes driven by wave and current action in shallow waters. The seabed (intertidal mudflats) is also expected to naturally recover via natural sediment processes from any excavations during construction of HDD exit pits and marine cable burial.</p> <p>Saltmarsh accretion</p> <p>It is unlikely that saltmarsh would accrete seawards to the extent that the exit pits would no longer be located outside saltmarsh habitats. While often defined in ecological terms, the presence and functioning of saltmarsh systems is fundamentally determined by the interplay of ecological processes with</p>

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
				<p>hydrodynamic and sedimentary processes. These processes operate in an intertidal 'accommodation space', the area suitable for saltmarsh to develop. The vertical boundaries to this space are typically between mean high-water neap and highest astronomic tide (HAT) (Hudson et al., 2021) and so there are limits to this habitat distribution</p> <p>Secondly, any significant seaward extension is also expected to be limited due to the effect of sea level rise, the consequence of which could be a reduction on the seaward extent of the saltmarsh as opposed to a continued seaward extension.</p> <p>As set out in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] to further reduce the potential for any impacts on the saltmarsh habitat, the Applicant has also committed to the following:</p> <p>B67 – Commitment to no vehicle or pedestrian access across saltmarsh and access routes across mudflats informed by pre-construction saltmarsh habitat survey</p> <p>B68 - Pegwell Bay Construction Method Statement in consultation with NE and KWT covering all activities in Pegwell Bay</p>
4	4.3.41	Natural England notes that it is stated that there will be no cable protection, but within other documents cable protection both temporary and permanent is proposed at the exit pit locations.	Natural England advises that the HRA is updated to reflect the contents of the name plans.	<p>The Applicant acknowledges the point made. Paragraph 4.3.41 in Application Document 6.6 (F) Habitats Regulations Assessment Report [TBC] relates specifically to the assessment of effects on the OTE SPA. It is acknowledged that the first sentence of paragraph 4.3.41 states '<i>Cable protection is not anticipated within any European Sites designated for benthic habitats or species</i>' is correct. However, given that there is a requirement for cable protection to be installed in Pegwell Bay (within the Sandwich Bay SAC) at the trenchless crossing exit (noting this will be buried and therefore, there will be no cable protection on or above the surface of the seabed anywhere within the intertidal mudflats of Pegwell Bay) the statement has missed reference to Sandwich Bay SAC, for which mudflats are part of the site character, even though they are not a designating feature. The text in paragraph 4.3.41 of Application Document 6.6 (F) Habitats Regulations Assessment Report [TBC] has been updated to include reference to the buried cable protection at the Kent Landfall in Pegwell Bay and submitted at Deadline 4. The correction has not changed any of the conclusions from the assessment as presented in the previous version as the buried cable protection does not result in any permanent habitat loss.</p>
5	4.4.2	Natural England notes that there is no consideration in the HRA of disturbance impacts to the SPA from vehicle movement within the intertidal on which the SPA features rely.	Natural England advises that further consideration of disturbance impacts on SPA birds from vehicle movement within the intertidal area is required.	<p>Updates to HRA were submitted at Deadline 2 (Application Document 6.6 (D) Habitats Regulations Assessment Report (Tracked) [REP2-010]) to include further clarification on potential effects from vehicle movements in the intertidal area on ornithological features associated with the Thanet Coast and Sandwich Bay SPA. These updates were informed by information presented in:</p> <ul style="list-style-type: none"> • Application Document 6.2.4.5 (C) Environmental Statement Part 4 Marine Chapter 5 Marine Ornithology (Tracked) [REP2-004] • Application Document 6.4.4.5 (B) ES Figures Marine Ornithology (Tracked) [REP2-008] • Application Document 9.13 (B) Pegwell Bay Construction Method Technical Note (Clean) [REP2-011]

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
6	5.3.8	Natural England highlights that whilst NEMO has completed construction there are residual impacts that are greater than predicted which provide context on site condition to inform assessments	Natural England advises that ongoing impacts which continue to affect site condition need to be considered to provide context for determining the significance of further impacts on features.	For NEMO, there is no evidence of residual impacts on any other feature apart from saltmarsh, a habitat which the Sea Link Proposed Project is actively avoiding via the use of trenchless installation of the cable 15-18 m below the saltmarsh (i.e. REAC commitments).
7	7.3.10	Natural England advises that until further consideration of potential changes to coastal processes are considered from the placement of infrastructure, Natural England advises that we are currently unable to support the conclusions on smothering of intertidal habitats.	Natural England advises that further consider of potential changes in coastal process is required. Please Appendix E3a at Deadline 3a for further benthic advice.	The upper intertidal habitat within Pegwell Bay is predominantly mud which is relatively insensitive to smothering. For example, the sensitivity rating for intertidal mud, which is a supporting habitat for the Thanet Coast and Sandwich Bay SPA, is between low to no sensitivity to 'Light' deposition of up to 5 cm of fine material. Note also that no infrastructure, other than that which is buried at the HDD exit pits or the cable buried in a trench, will be present at Pegwell Bay. Pegwell Bay is a low energy environment in terms of tidal currents with the intertidal sections of the cable route (KP118 to KP120.5) subject to wetting and drying as the tide rises and falls. Sediment disturbed during cable burial will therefore remain in suspension for a limited period before the tide recedes and the majority of any suspended sediment deposited back onto the intertidal surface rather than being more widely dispersed. Application Document 9.20.2 Landfall Sediment Modelling Report Pegwell Bay [PDA-038] explains that peak current velocities in Pegwell Bay are less than 0.1m/s. Due to the extremely low magnitude of tidal currents within Pegwell Bay, any increase in SSC will appear as a short duration 'spike' and similarly the extent of any deposition of sediment on the intertidal surface will be limited. The process described is similar to the natural disturbance of surficial sediments during typical storm conditions and on this basis no further assessment is considered necessary.
8	7.3.12	We draw the ExA and Applicant's attention to East Anglia One Offshore cable installation under Martlesham Creek in the Deben SPA where there was a bentonite frac-out which spread across the intertidal areas which did not rapidly disperse, impacting on benthic infaunal communities. This area was unable to support SPA birds to the same extent for several years. Therefore, we highlight that bentonite frac-out also has impacts pathways to SPA features. Our position is supported by section 3.4.3 of the landfall construction method statement [REP2-012].	Natural England advises that further consideration is given to the likely duration of bentonite remaining on the seabed and the implications for the wider ecosystem.	The Applicant has reviewed the HDD location for the East Anglia One Offshore cable installation under Martlesham Creek (the location is 52°04'41.0"N 1°18'16.1"E). This is a constrained environment, within an inland estuary so there is very little coastal wave action, which would help explain the limited dispersion of bentonite frac-out. This is not comparable to Pegwell Bay which is a more dynamic environment subject to wave and tidal current action in shallow waters. The saltmarsh in Pegwell Bay is dry 50% of the time and is on accessible relatively firm ground, such that any frac-out could be easily removed.
9	7.3.68	Natural England notes that there is no consideration of vehicle movements in the HRA for cable installation and operation activities.	Natural England advises that in order to consider the potential impacts from cable installation and/or repair replacement of cables on intertidal habitats and protected species which rely on this habitat, vehicles transiting the intertidal should be considered in full and how potential	Updates to HRA were submitted at Deadline 2 (Application Document 6.6 (D) Habitats Regulations Assessment Report (Tracked) [REP2-010]) to include further clarification on potential effects from vehicle movements in the intertidal area on ornithological features associated with the Thanet Coast and Sandwich Bay SPA. These updates were informed by information presented in: Application Document 6.2.4.5 (C) Environmental Statement Part 4 Marine Chapter 5 Marine Ornithology (Tracked) [REP2-004]

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
			changes to habitat features over the lifetime of the project will be impacted.	Application Document 6.4.4.5 (C) ES Figures Marine Ornithology (Tracked) [REP3-026] Application Document 9.13 (B) Pegwell Bay Construction Method Technical Note (Clean) [REP2-011]
10	7.3.68	Natural England doesn't currently agree with conclusion on the significance of temporary disturbance.	Natural England signposts to comments included within Appendix D3 on marine process at Deadline 3 and Appendix E3a on Benthic impacts provided at Deadline 3a.	Noted. Applicant's responses to comments from Natural England in Appendix D3 on marine process at Deadline 3 and Appendix E3a on Benthic impacts provided at Deadline 3a are provided in Application Document 9.86 Applicant's Comments on Other Submissions Received at Deadlines 3 and 3A which have been submitted at Deadline 4.
11	7.4.3	Natural England notes that the depth of cable installation for HDD is likely to be 15-18m. Natural England queries at this depth whether the required HDD installation distance will be achieved.	Natural England would welcome further assurance being provided that the depth of installation will not hinder achieving the HDD distance required.	The length and depth of the HDD are both well within normal drilling parameters for maxi HDD rigs. The HDD is feasible, as detailed in the HDD Feasibility Technical Note Application Document 7.3 Design Development Report – Appendix A Landfall HDD Feasibility Technical Note [APP-321] .
Document reviewed: REP1-072 6.6 (C) Habitats Regulations Assessment Report (Tracked Changes)				
1	N/A	Natural England highlights that whilst this document supersedes AS-007 the comments provided in Table 1 above still remain valid in addition to those provided here.	Please address the comments in Table 2 as well as those presented in Table 1 above.	Comments in Table 1 and Table 2 were addressed in Application Document 6.6 (E) Habitats Regulations Assessment Report (Clean) [REP3-028] .
2	N/A	Natural England welcomes the Applicant's amendments to the HRA (REP1-071) to include a more detailed consideration of the potential for hydrological impacts associated with HDD cable installation. It has been confirmed by our specialists that the evidence shows that there isn't a risk posed by works impacting water levels supporting dune slacks. Evidence from the Applicant shows that there will be no dewatering at HDD exit points and the distance between the locations of the exit points and the nearest dune slack habitat (approx. 600m) are sufficient to conclude that there is no pathway for impact upon hydrology of dune slack habitats of Sandwich Bay SAC.	N/A	Closed.
3	Table 2.3	We are satisfied with the Applicant's response which confirms that in the event that equipment should become stuck no excavation to recover stuck equipment would be undertaken along the Kent HDD	N/A	Closed.

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
		route beneath areas of saltmarsh or shallow lagoon.		
4	Table 3.1	Natural England welcomes the recognition that the fresh and salt marshes are interest features of the Ramsar	Natural England draws the ExA attention to the importance of the saltmarsh environment.	The Applicant has recognised the importance of the saltmarsh and has designed the Project to completely avoid this habitat by using trenchless techniques to install the cables at Kent Landfall/Pegwell Bay.
5	4.3.42	Natural England notes that there is only consideration of supporting habitat change/loss for Annex I terns and not Red Throated Divers.	Natural England advises that impacts to supporting habitat and changes to prey availability should be considered for all protected site features.	The Applicant notes that this paragraph should also refer to red-throated diver, as well as terns. Application Document 6.6 (F) Habitats Regulations Assessment Report [TBC] has been updated and red throated diver included in paragraphs 4.3.41 and 4.3.42 and submitted at Deadline 4. The addition of red-throated diver does not change the conclusion presented in paragraph 4.3.42 that there will be no significant effect on the Outer Thames Estuary SPA.
6	3.47	Natural England notes that the use of 360m ² of concrete mattresses is included for landfall works. But there is no consideration of duration of placement and direct and indirect impacts from their use.	Natural England advises that further assessment of the direct and indirect impacts from the use of concrete mattresses is required, including consideration of any scouring.	As set out in paragraph 4.6.162, bullet point 5: Duct Installation and paragraph 4.6.185 of Application Document 6.2.1.4 (D) Part 1 Introduction Chapter 4 Description of the Proposed Project (Clean) [REP1A-003] protection at the trenchless crossing exit pits could comprise either rock bags or concrete mattresses. The rock bags/concrete mattresses present at the Suffolk landfall HDD exit pit will be buried and there will therefore be no interaction with the water column and so scour is not a potential impact in these locations (landfalls). The potential effects of all cable works at the landfalls including the requirements for the use of rock bags / concrete mattresses on physical processes have been assessed in Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4 and Application Document 6.6 (F) Habitats Regulations Assessment Report also submitted at Deadline 4.
7	4.4.2	Natural England highlights that habitat loss, indirect impacts through changes to ground water levels and actual depth of HDD is confused.	Natural England advises that further clarity on the potential impacts at all locations and features where HDD is proposed is provided.	Detail has been provided on how the HDD Landfall at Kent will not affect groundwater levels in Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014] , Table 2.33, Ref B1. Further clarity is provided below: The entry section of the HDD through the upper groundwater bodies (above and in the Thanet Formation) will be sealed by a temporary entry casing. Therefore, they will be unaltered by the HDD. Following installation of the duct, any voids between the duct and the surrounding ground or in-situ casing will be sealed to prevent mixing of different groundwater bodies. The majority of the drill will be through the chalk and is expected to encounter the chalk aquifer. It has been assumed that the chalk aquifer will effectively be artesian at the HDD exit, therefore the project has provisioned for a coffer dam at the HDD exit to contain artesian water, with the coffer also preventing mixing of the chalk aquifer with any groundwater in the Thanet formation and seabed sediments, and flow to the sea. Therefore, the groundwater levels in the aquifer will not be affected by the HDD. Following installation of the duct, the exit section of the HDD will be sealed around the duct so that there is no route for groundwater from the chalk aquifer to the surface at the HDD exits.

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
			In effect, all the separate groundwater bodies (surficial overlying the Thanet, within the Thanet, and the chalk aquifer) will be isolated and their groundwater levels and flow regimes will not be altered during construction or in the long term.	With groundwater levels unaltered by the HDD landfalls, there is no potential impact on habitats from groundwater changes.
8	7.4.13	Natural England notes that there is no link to a Horizontal Directional Drill (HDD) Management plan or a landfall management plan to assess impacts from a yet undefined number of vehicles moving across the intertidal mudflats which is supporting habitats for SPA birds and is likely to succession into saltmarsh habitat a feature of the Ramsar.	Natural England advises that the HRA is informed by an outline HDD/landfall construction management plan at the time of consent.	The Applicant has committed to a Pegwell Bay Landfall Construction Method Statement to be prepared in consultation with Natural England. This is commitment # B68 of Application Document 9.84 Register of Environmental Actions and Commitments (REAC) .

Document reviewed: REP2-010 6.6 (D) Habitats Regulations Assessment Report (Tracked) and REP3-029 6.6 (E) Habitats Regulations Assessment Report (Tracked)

1	N/A	Natural England has no comment on the updates made to the HRA in relation the intertidal ecology at Deadline 2 [REP2-010] our comments in Table 1 and 2 remain relevant.	N/A	Noted.
2	N/A	Natural England notes that the updated HRA at Deadline 3 [REP3-029] includes updates setting out the favourable condition status of the designated sites and features. And addresses RSPB concerns in relation to recognising potential impact pathways to Annex I Marsh Harrier.	Natural England has no comments to make in relation to the updates from an intertidal ecology perspective.	Noted.

Document reviewed: [REP1-103] 7.5.3.2 (B) CEMP Appendix B Register of Environmental Actions and Commitments (REAC) (Tracked Changes).

1	B61	Natural England notes that the commitment to remove bentonite where necessary within saltmarsh feature doesn't include 'by only using handheld equipment'.	Natural England advises that this commitment should be updated to ensure there will be no vehicle access onto the saltmarsh.	Commitment # B67 of the Application Document 9.84 Register of Environmental Actions and Commitments (REAC) states that there will be no vehicular or pedestrian access across the saltmarsh and # B69 that the temporary HDD exit pits will be at least 105 m, and the working area a minimum of 50 m away from the seaward extent of the saltmarsh. The Applicant has also updated Commitment #B61 in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) / other control document submitted at Deadline 4A to include reference to only using handheld equipment in the saltmarsh.
2	B66, [AS-138], [CR1-055]	Natural England notes that the Change Request to extend the use of/egress from the redundant Hoverport to avoid impacts to saltmarsh vegetation from known changes in the extent of this habitat. Table 1 of document AS-138 states that this change was prompted following	Natural England advises that a commitment is made to avoid access on to the south-west corner of the hoverport. Natural England also queries what the contingency will be if the extent of vegetation changes both temporally and	Commitment #B67 in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) states "To ensure there will be no vehicular or pedestrian access across the saltmarsh, access and egress of vehicles to the mudflats will be via the former hoverport with a buffer between the defined access route and the seaward (distal) limit of the saltmarsh. The locations and widths of access routes across the mudflats will be defined post consent in consultation with

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
		<p>surveys which suggest that the frontal edge of the saltmarsh extends outwards into the intertidal mudflats further than previously anticipated. This can be seen on aerial photographs which suggest that access from the south-west corner of the hoverport should be avoided due to the presence of fragmented saltmarsh vegetation. The proposed changes to the order limits will allow access on to the intertidal zone from the south/south-east of the hoverport site directly onto unvegetated mudflat.</p>	<p>spatially? Will impacts to saltmarsh habitats still be avoided?</p>	<p>Natural England and Kent Wildlife Trust as appropriate and will be informed by a pre-construction saltmarsh habitat survey".</p> <p>The REAC also includes a commitment that there will be no vehicular access onto the saltmarsh. The potential for seaward accretion of the saltmarsh is naturally limited by tidal height and sea level rise but should it occur any repairs that would need to be done would not use any of the saltmarsh habitat for access and the same measures deployed during construction would be adopted.</p>
3	B67	<p>Natural England highlights that the commitments included to reduce impacts to intertidal habitats and supporting habitats is not sufficient.</p>	<p>Natural England advises that further mitigation measures should be considered to reduce the impacts to intertidal habitats and compaction of sediment; such as only using low ground pressure vehicles, limiting the number and type of vehicles, reducing speeds, number of trips per day, potential use of an aluminium trackway, having an Ecological Clearak of Works (ECoW) to do a real time review of impacts and change access routes where required to lessen the intensity of the impact in any one area.</p>	<p>Low pressure vehicles will be used as a best practice and engineering led measure for works in the intertidal at Pegwell Bay. The vehicles to be used are provided in Application Document 9.13 Pegwell Bay Construction Method Technical Note [REP2-011]. The use of low-pressure bearing vehicles has been added to commitment B67 in an update to Application Document 9.84 Register of Environmental Actions and Commitments (REAC)/other control document submitted at Deadline 4A.</p> <p>Of the main equipment proposed, excavators and tractors are low ground pressure bearing. 4WD's can be run with reduced tyre pressure if required, but they are not expected to be frequently used in the area.</p> <p>The numbers and types of vehicles required during construction will depend on specific construction methods and requirements. The assessments presented in Application Document 6.2.4.5 (C) Environmental Statement Part 4 Marine Chapter 5 Marine Ornithology (Clean) [REP2-003], Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology [TBC] submitted at Deadline 4 and Application Document 6.6 (F) Habitats Regulations Assessment Report [TBC] submitted at Deadline 4 are based on a MDS for vehicle numbers and types. These assessments all conclude that there are no likely significant effects (EIA) or adverse effects on integrity (HRA) associated with the use of the intertidal mudflats for construction access.</p> <p>Vehicle speeds will also be dependent on vehicle type, size and compliance with construction safety requirements for working in areas such as intertidal mudflats.</p> <p>With regards to the use of an aluminium trackway, the Applicant has already noted in Application Document 9.13 (B) Pegwell Bay Construction Method Technical Note (Clean) [REP2-011] that there will be a requirement for protective matting (or similar) to be installed over the Thanet and Nemo cables. At this stage it is not possible to commit to a specific type of trackway material. The material proposed for the trackway (where required) will be identified in the Pegwell Bay Construction Method Statement included in # B68 of Application Document 9.84 Register of Environmental Actions and Commitments (REAC). This will be prepared in consultation with Natural England.</p> <p>An offshore Environmental Advisor/Manager (secured through Application Document 7.5.2 Outline Offshore Construction Environmental Management Plan [APP-339]) will be appointed during construction to work with the construction team to monitor the condition of any segments of trackway to ensure that they</p>

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
4	B68	It is the view of Natural England that AEol on SPA/Ramsar or significant impacts to SSSI can't be excluded. Further commitments are required.	Natural England advises that further commitments are required to mitigate impacts. And that the final Landfall Construction Method Statement should be agreed in consultation with NE prior to construction.	minimise the impact on the intertidal ecology while maintaining safe access to the work area. No significant impacts have been identified for works at Pegwell Bay and the Applicant has already committed to preparing a Pegwell Bay Construction Method Statement in consultation with Natural England. This is commitment #.B68 of Application Document 9.84 Register of Environmental Actions and Commitments (REAC) .
5	B69	Natural England advises that no evidence has been presented that 50m is sufficient to ensure that significant impacts to saltmarsh features can be avoided.	Natural England advises that further evidence should be presented to demonstrate that impacts can be avoided not just for installation, but also during the operational phase.	Any disturbance to intertidal sediments will be localised with coarser sediment fractions rapidly settling back onto the intertidal surface. As described in the updated ES chapter, Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment , fine sediments may remain in suspension for longer periods but can also be expected to settle on the bed due to the low magnitude of tidal currents within Pegwell Bay or carried offshore by the receding tide. This process of small-scale sediment re-distribution is similar to the response under natural conditions, such as during moderate storm activity, which is partially responsible for the observed natural variability in intertidal bed levels of the order ±0.25m. Based on updated information presented in Application Document 6.2.4.5 (C) Environmental Statement Part 4 Marine Chapter 5 Marine Ornithology (Tracked) [REP2-004] and Application Document 6.4.4.5 (C) ES Figures Marine Ornithology (Tracked) [REP3-026] there will be no significant effects on bird species using the saltmarsh due to disturbance. The area between the cofferdam and the 50 m buffer to the saltmarsh will only be used by low pressure vehicles as included in an updated to commitment B67 in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) /other control document submitted at Deadline 4A. This will also ensure that there are no significant effects on mudflat habitats that could also result in impacts to the saltmarsh habitat. During operation there is not expected to be any requirement for further works. There will be a requirement for an initial post-construction monitoring survey to be completed to confirm target depth of lowering is achieved and all construction works completed as required. However, unless there is a requirement for a cable repair or remedial works (which are not planned) there will be no requirement for any further activity to occur within the intertidal area. In the event that there is a requirement to carry out a repair or remedial work, all commitments set out in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) / other control document submitted at Deadline 4A will apply to these works.
6	B70	Natural England highlights that whilst this commitment is designed to protect saltmarsh there is no consideration of compaction of the intertidal mudflats which from experience from other projects is likely to hinder naturally transition to Annex I saltmarsh.	As above in terms of consider further mechanism to reduce/mitigate impacts.	Low pressure vehicles will be used as a best practice and engineering led measure for works in the intertidal at Pegwell Bay. The vehicles to be used are provided in Application Document 9.13 Pegwell Bay Construction Method Technical Note [REP2-011] . The use of low-pressure bearing vehicles has been added to commitment B67 in an update to Application Document 9.84 Register of Environmental Actions and Commitments (REAC) / other control document submitted at Deadline 4A.

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
7	MPE02	Natural England advises that 1.5m burial is sufficient to allow for seabed lowering at this location. Please note that if the surrounding seabed lowers greater than 1.5m this cable protection is likely to become an elevated area/pinnacle with surrounding scouring.	Natural England advises that further information on coastal processes is required to support this mitigation measure.	<p>Of the main equipment proposed, excavators and tractors are low ground pressure bearing. 4WD's can be run with reduced tyre pressure if required, but they are not expected to be frequently used in the area.</p> <p>The adoption of low pressure bearing vehicles or use of reduced tyre pressure will minimise potential impacts to intertidal mudflats from vehicle movements. There is a buffer of at least 50 m from the seaward extent of the saltmarsh and thus impacts to the saltmarsh are unlikely. In addition, as set in response to Natural England's Advice On: Kent Landfall - intertidal and benthic ecology relating to the Kent landfall Document reviewed: 6.6 (E) Habitats Regulations Assessment Report [REP3-028] - Point 3 above the seaward accretion of the saltmarsh is naturally limited by tidal height and is therefore unlikely to encroach further into Pegwell Bay. Any potential encroachment is also likely to be hindered by sea level rise, which could lead to a retreat of the habitat.</p>
8	MPE04	Natural England queries why rock is proposed at the exit pits and no other forms of protection.	Natural England advises that further justification is needed in relation to the need for cable protection at the exit pit locations. And where this proven to be justified, further justification is required as to why only rock protection has been considered. Natural England advises that where required other cable protection options which are more readily removable should be considered.	<p>As noted in the detailed landfall assessment, Application Document 9.20.2 Landfall Sediment Modelling Report Pegwell Bay [PDA-038], historical variations in bed levels along the proposed cable route for the mid to upper intertidal sections are in the range $\pm 0.25\text{m}$ with increased variability of $\pm 0.5\text{m}$ lower down the intertidal at approx. KP119.</p> <p>On the above basis, it was concluded that in terms of future variability in bed levels, '<i>it is not expected that this would pose a problem to the cable</i>', In the unlikely event of the cable becoming exposed, appropriate remedial measures would be undertaken to safeguard the integrity of the cable and avoid any wider-scale effects.</p> <p>Exposure of the cable would require a significant northward migration of the entire River Stour low water channel which is not considered to be a likely future scenario within the service life of the cable. Northward migration may occur in close proximity to Shell Ness, although future growth of this feature is expected to be episodic rather than continuous.</p> <p>Based on the envelope of change in bed level over the period 2007-2022 (Figure 27 included in Application Document 9.20.2 Landfall Sediment Modelling Report Pegwell Bay [PDA-038]), the most significant changes are shown to have occurred more than 500m to the south of the proposed cable route, this includes recent periods when Shell Ness has migrated northwards.</p> <p>The steep-sided cross-sections of the river channel where it crosses the intertidal are indicative of a stable morphology, further supported by the limited requirement for dredging to maintain a navigable channel. The channel is therefore expected to naturally adapt to the gradual influence of rising sea levels rather than being disturbed from its current equilibrium state.</p>

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
				<p>protection, the safety of other sea users must also factor into the design and materials used, for instance, reducing the likelihood of snagging from fishing gear. The Applicant can confirm that the types of rock protection used for the Proposed Project are presented in further detail within Application Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4.</p> <p>The confirmed approach to decommissioning for the Proposed Project will be detailed within the final Offshore Decommissioning Plan submitted to the Secretary of State for approval approximately 2 years prior to decommissioning commencing. This will be subject to agreement with the relevant authorities based on further and more refined surveys and assessments performed prior to decommissioning in line with the relevant legislation and guidance in place at that time.</p> <p>The approach will be based on an assessment of relative net environmental benefit, taking into consideration the in situ ecological value of the offshore components alongside other factors such as navigational safety, available technology and the feasibility of recycling. With this in mind, at this stage the Applicant is unable to commit to using cable protection that is most easily removable at decommissioning.</p> <p>The Applicant can confirm that Application Document 9.93 Offshore Decommissioning Technical Note has been submitted at Deadline 4.</p>
Document reviewed: [REP2-012] 9.13 (B) Pegwell Bay Construction Method Technical Note (Clean)				
1	N/A	<p>Natural England welcomes the submission of the outline Landfall Construction Method Statement.</p> <p>Whilst we advise that this document requires further updates to provide a level of comfort to the Secretary State to inform project determination. We also advise that once the final project parameters are known that the final LCMS is agreed with the regulators in consultation with the relevant SNCB.</p>	<p>Natural England advises that a requirement/condition is included within the DCO/dML to ensure that the final LCMS is agreed with the regulators in consultation with the relevant SNCB prior to construction.</p>	<p>This is noted by the Applicant. The Applicant is currently considering whether such a condition could be included within the draft DCO/ DML which will be submitted at Deadline 5.</p>
2	2.2.5	<p>Natural England notes that the transit route across the intertidal is to be agreed prior to construction. However, we highlight that from experience on other projects that repeated access along a route is likely to cause rutting and compaction of sediment, which in the longer term is likely to hinder the accretion of saltmarsh into this area and change infaunal communities of which SPA species rely.</p>	<p>To resolve this Natural England advises that further mitigation measures should be considered to reduce the impacts to intertidal habitats and compaction of sediment; such as only using low ground pressure vehicles, limiting the number and type of vehicles, reducing speeds, number of trips per day, potential use of an aluminium trackway, having an ECoW to do a real time review of impacts and change access routes where required to lessen the intensity of the impact in any one area.</p>	<p>Low pressure vehicles will be used as a best practice and engineering led measure for works in the intertidal at Pegwell Bay. The vehicles to be used are provided in Application Document 9.13 Pegwell Bay Construction Method Technical Note [REP2-011]. The use of low-pressure bearing vehicles has been added to commitment B67 in an update to Application Document 9.84 Register of Environmental Actions and Commitments (REAC) to be submitted at Deadline 4A.</p> <p>Of the main equipment proposed, excavators and tractors are low ground pressure bearing. 4WD's can be run with reduced tyre pressure if required, but they are not expected to be frequently used in the area.</p> <p>The numbers and types of vehicles required during construction will depend on specific construction methods and requirements. The assessments presented in Application Document 6.2.4.5 (C) Environmental Statement Part 4 Marine Chapter 5 Marine Ornithology (Clean) [REP2-003], - 6.2.4.2 (C) Part 4 Marine Chapter 2 Benthic Ecology (Clean) [REP1-053] and Application Document 6.6 (E) Habitats Regulations Assessment Report (Tracked) [REP3-029] are based</p>

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
				<p>on a MDS for vehicle numbers and types. These assessments all conclude that there are no likely significant effects (EIA) or adverse effects on integrity (HRA) associated with the use of the intertidal mudflats for construction access.</p> <p>Vehicle speeds will also be dependent on vehicle type, size and compliance with construction safety requirements for working in areas such as intertidal mudflats.</p> <p>With regards to the use of an aluminium trackway, the Applicant has already noted in Application Document 9.13 (B) Pegwell Bay Construction Method Technical Note (Clean) [REP2-011] that there will be a requirement for protective matting (or similar) to be installed over the Thanet and Nemo cables. At this stage it is not possible to commit to a specific type of trackway material. The material proposed for the trackway (where required) will be identified in the Pegwell Bay Construction Method Statement included in # B68 of Application Document 9.84 Register of Environmental Actions and Commitments (REAC). This will be prepared in consultation with Natural England.</p> <p>An offshore Environmental Advisor/Manager (secured through Application Document 7.5.2 Outline Offshore Construction Environmental Management Plan [APP-339]) will be appointed during construction to work with the construction team to monitor the condition of any segments of trackway to ensure that they minimise the impact on the intertidal ecology while maintaining safe access to the work area.</p>
3	2.2.6	<p>Natural England queries the necessity of some equipment for landfall activities including tractors and hovercraft. We advise that a tractor is likely to significantly compact sediment and cause rutting if not modified. And that hovercrafts are particularly disturbing to SPA birds and their use in other SPA's is heavily controlled. We also query why so many 4WD vehicles are required.</p> <p>Natural England advises that whilst we note that the Applicant has based the vehicle access on Walney OWF installation, which is a good foundation, but highlight that this is a different site with different considerations and that more is known about ongoing impacts since the Walney installation.</p> <p>Natural England advises that AEol can't be excluded based on what is currently included within the method statement.</p>	<p>Natural England advises that further consideration is given to reducing impacts to designated site features.</p>	<p>The hovercraft will be on standby and used as a last resort for emergencies only. It will not be used at any other time during any stage of the project.</p> <p>For clarity on other vehicles, the use of low-pressure bearing vehicles has now been added to commitment B67 in an update to Application Document 9.84 Register of Environmental Actions and Commitments (REAC) / other control document which will be submitted at Deadline 4A. Of the main equipment proposed, excavators and tractors are low ground pressure bearing.</p>
4	2.2.7	<p>Natural England advises that where bog mats and some types of trackway have been driven over within the intertidal, they have been pushed into the sediment, often unevenly, resulting in compaction of the sediment and creation of a vacuum</p>	<p>Natural England advises that either transit of the intertidal is fully established, agreed and assessed as part of the consenting process or a separate pre-construction marine licence will be required for the</p>	<p>Low pressure vehicles will be used as a best practice and engineering led measure for works in the intertidal at Pegwell Bay. The vehicles to be used are provided in Application Document 9.13 Pegwell Bay Construction Method Technical Note [REP2-011].</p> <p>For clarity, the use of low-pressure bearing vehicles has now been added to commitment B67 in an update to Application Document 9.84 Register of Environmental Actions and Commitments (REAC) / other control document which will be submitted at Deadline 4A. Of the main equipment proposed, excavators and tractors are low ground pressure bearing.</p>

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
		<p>which makes removal challenging and more damaging to the intertidal habitats. Therefore, Natural England is not supportive of the unrestricted use of them as proposed here.</p> <p>Natural England also notes that small bailey bridges with low impact were used by Hornsea Project 2 to cross Hornsea Project 1 cables in similar habitats.</p>	<p>transit and use of equipment not fully assessed as part of the consenting phase.</p>	<p>Environmental Actions and Commitments (REAC) which will be submitted at Deadline 4A. Of the main equipment proposed, excavators and tractors are low ground pressure bearing. In addition, 4 wheel-drive vehicles can be run with reduced tyre pressure if required, but they are not expected to be frequently used in the area. The access routes are constrained by the Order Limits, developed to avoid the seaward boundary of the saltmarsh habitat. The Project offshore Environmental Advisor/Manager (secured through Application Document 7.5.2 Outline Offshore Construction Environmental Management Plan [APP-339]) and construction team will monitor the condition of any segments of trackway to ensure that they minimise the impact on the intertidal ecology while maintaining safe access to the work area. The team will also make any changes necessary to ensure that the trackway is recovered with minimal environmental impact when it is no longer required for the construction.</p> <p>The Applicant considers that the approach to defining access routes pre-construction and for these to be informed by a pre-construction saltmarsh habitat survey (as set out in Commitment #B67 in Application Document 9.84 Register of Environmental Actions and Commitments (REAC)) allows for greater certainty on the exact location of the saltmarsh habitat at the point immediately prior to commencing construction rather than the routes being identified pre-consent as suggested. This commitment also requires that Natural England and Kent Wildlife Trust as appropriate are consulted on the access routes and locations. The Applicant has also committed to preparing a Pegwell Bay Landfall Construction Method Statement (commitment # 68 Application Document 9.84 Register of Environmental Actions and Commitments (REAC)) in consultation with NE and KWT covering all activities in Pegwell Bay including construction traffic access across the mudflat.</p> <p>The Applicant does not agree that a second marine licence is required for vehicle activity in the intertidal environment.</p> <p>The use of the intertidal area for construction access has been fully assessed as part of the main application. Findings from the assessment are presented in the following documents:</p> <ul style="list-style-type: none"> • Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4 • Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology submitted at Deadline 4 • Application Document 6.2.4.5 (C) Environmental Statement Part 4 Marine Chapter 5 Marine Ornithology [REP2-003]. • Application Document 6.2.4.6 (D) Part 4 Marine Chapter 6 Marine Archaeology submitted at Deadline 4 • Application Document 6.6 (F) Habitats Regulations Assessment Report submitted at Deadline 4 <p>It was concluded in all assessments that there would be no significant adverse effects on any receptors within Pegwell Bay.</p> <p>Based on these conclusions and the fact that potential impacts of the use of the mudflats for construction access have already been assessed removes the requirement for any further assessment of this activity under a second marine licence.</p>

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
5	2.3.3	Natural England notes that detail on the cofferdam parameters are not fully provided elsewhere in the Application documents, are provided here. Noting that installation will take a total of 28 days to install 4 x cofferdams (30m x 5m) if done sequentially. However, this doesn't take account of breaks between installation. Or that 2 cofferdams can be in situ at the same time. The worse case that is presented is 120 days for cofferdams to be in situ, which depending on the time of year can significantly impact coastal processes, causing scouring of the seabed and impact intertidal habitats.	Natural England advises that further consideration of potential impacts of these large cofferdams being in situ for 120 days is required.	<p>Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment [TBC] has been updated to include the larger cofferdam dimensions than previously assessed.</p> <p>Only one cofferdam will be installed at any time, and while the total duration of cofferdams being in place is 120 days, each cofferdam is expected to be in place for only 30 to 60 days. Therefore, any impact will be temporary. (Application Document 9.13 Pegwell Bay Construction Method Technical Note [Rep2-011]).</p> <p>The cofferdams will be located at approximately Mean Sea Level (+0.20m ODNN with local MSL approximately 0.15m ODN). Consequently, for 50% of the time the area surrounding the cofferdam will be dry and therefore no scour will take place. Further, Application Document 9.20.2 Landfall Sediment Modelling Report Pegwell Bay [PDA-038] shows that peak current velocities in this part of Pegwell Bay are less than 0.1m/s, below the threshold required to initiate sediment scour. On the above basis, accounting for the larger cofferdam dimensions than previously considered, the magnitude of any change in relation to the cofferdam on nearshore seabed morphology (and the associated flow dynamics) will be small. This results in a minor effect which is not significant.</p> <p>Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment has been updated for submission at D4.</p>
6	2.3.3	Natural England notes that lighting of the cofferdams is proposed, as is a working area around them resulting in a disturbance area of 21,600m ² of intertidal habitat.	Natural England advises that further assessment of disturbance impacts to Annex I birds (foraging, roosting and nesting) and foraging bat species is required in relation to both temporary habitat loss and impacts from lighting and installation works.	<p>There would be the requirement for lighting on the cofferdams while they are being constructed. Lighting would be directed inwards towards the working area of the cofferdam erection. There is no requirement for lighting of the wider working area of 21,600m² and as such, no further impacts from construction lighting in the intertidal area will occur on birds.</p> <p>There will be no light spill on terrestrial habitats from lighting of the cofferdam construction and as such no impacts on bats will occur. Given, the erection of the cofferdams occurs only in the intertidal, foraging bats are unlikely to be present.</p> <p>Potential effects of disturbance and habitat loss from installation works on Annex I birds has been assessed in Application Document 6.2.4.5 (C) Environmental Statement Part 4 Marine Chapter 5 Marine Ornithology [REP2-003]; Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology submitted at Deadline 4 and Application Document 6.6 (F) Habitats Regulations Assessment Report submitted at Deadline 4. The assessment concludes that there is no potential for any likely significant effects from disturbance or habitat loss on Annex I birds or any adverse effects on the integrity of the Thanet Coast and Sandwich Bay SPA.</p>
7	Table 2.1	Natural England notes that there are no considerations of scouring, changes to sediment distribution, and changes to tidal hydrodynamics across the saltmarsh from the presence of cofferdams. We highlight that saltmarsh habitats are sensitive to all of these changes in coastal processes.	Natural England advises that the Applicant should undertake a further assessment and update named docs/plans accordingly.	See response to comment 5 above.
8	3.3.1	Natural England notes that rollers (Gravity based or piled) will be placed on the intertidal at a spacing of 12m. However, it	Natural England advises that a more detailed assessment is required and where possible these should be transported by	The cable rollers will be stored in a compound and brought to site via tractors and trailers and positioned either by telehandler or excavator.

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
		is not clear how many this will be and how they will be transported and installed.	sea to the intertidal on a barge which can bottom out with ramps so that installation equipment can access intertidal direct from there.	The number of rollers is not known but based on an estimated distance of 1,250 m from the CLV to the HDD ducts this would be x 104 rollers. If the cables are unbundled it could as a worst case scenario be x 2 = 208 rollers. Rollers will be installed as gravity-based rollers unless there are any tidal channels, where piled rollers may be required to reduce the risk of the roller being undermined by scour and lose stability.
9	3.4.3	Natural England notes that it is stated that drilling fluid is dense and may stay on the seabed where tidal action is weak. This aligns with our advice provided on the HRA [AS-007].	Natural England advises that further consideration is given to the likely duration of WCS of bentonite remaining on the seabed and the implications for the wider ecosystem.	As set out in Application Document 9.13 Pegwell Bay Construction Method Technical Note [REP2-011] the maximum duration of cable pull-in activities is 16 days (32 days if the cable is unbundled with 30 days between each pull in). This includes the installation and subsequent removal of the cable rollers. Given the location of the cable rollers will be predominantly across the lower and middle sections of the intertidal area which are submerged for longer periods of time and experience high levels of wave and tidal current action, it is expected that the seabed (intertidal mudflats) will naturally recover from the presence of vehicles required to install the cable rollers at each tidal cycle via natural sediment processes. Furthermore, installation and removal of the cable rollers is expected to be couple of days maximum further limiting the potential for any adverse effects from the transportation or installation of the cable rollers in the intertidal area.
10	3.4.7	Whilst Natural England agrees that bentonite is inert, we highlight that it can smother habitats where there is frac-out.	Natural England advises that further consideration of smothering of saltmarsh vegetation is required and that a HDD management plan is required as provided for North Falls Offshore windfarm [REP8-011].	Drilling fluid at Pegwell Bay will be recovered such that only 10 m ³ is predicted for each of the four ducts. Considering that each of the four ducts exiting in the intertidal zone will occur at least a month apart any bentonite that is released is low in volume and will have had time to disperse due to tidal and wave action.
11	Table 3.1	Natural England notes that a Jack Up Barge is proposed to be used for the construction a cofferdam. But this would have an impact of 50m ² per Jack Up. Experience from other wind farms is that depressions last longer than the predicted 2 years, but this is not the case if the barge used bottoms out.	Natural England advises that the supporting vessel which minimises impacts to the marine environment is used.	Assessment of frac-out impacts on the saltmarsh habitat in Pegwell Bay have been addressed in the HRA – Application Document 6.6 (F) Habitats Regulations Assessment Report [TBC] in relation to the following designated sites: Thanet Coast & Sandwich Bay SPA/Ramsar where the saltmarsh is a supporting habitat for this designation. Application Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4 presents or approach to a drilling fluid management plan which would be developed prior to undertaking HDD activities.
				The preferred, and most likely method of marine assistance at the HDD exit is a grounded barge, however a jack-up barge has been included in Application Document 9.13 Pegwell Bay Construction Method Technical Note [REP2-011] for the scenario where the freeboard of available grounded barges at high tide are deemed insufficient. If a jack-up barge is used at the landfall HDD exit location, an offshore Environmental Advisor/Manager (secured through Application Document 7.5.2 Outline Offshore Construction Environmental Management Plan [APP-339]) will be appointed during construction to work with the construction team to monitor and assess any mitigation of depressions required at the leg positions at the time. Further detail on marine support required at the HDD exits will be set out in the Pegwell Bay Landfall Construction Method Statement that will be prepared in accordance with commitment B68 of Application Document 9.84 Register of Environmental Actions and Commitments (REAC) and update to which/or another control document will be submitted at Deadline 4A.

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
12	Table 3.1	Natural England notes that 20 tonne bags of ballistic are proposed to be used. However, it is not clear in what capacity they will be used? How will ballistic be stopped from entering the marine environment, and if it does what the contingency would be.	Natural England advises that further information is required on the intended use of ballistic bags and impacts assessments undertaken accordingly.	Table 3.1 is referring to temporary stone/sand used as ballast during cable installation. Assessments of temporary rock protection in Pegwell Bay is assessed in full within Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment and Application Document 6.4.4.2 (B) Environmental Statement Figures Marine Benthic Ecology [REP1-067] .
13	Table 5.1	It is not clear how many trips across the intertidal is realistically required for each vehicle. Natural England advises that 40 movements is likely to result in significant impacts to the intertidal mudflats.	Natural England advises that further consideration is given to minimising abrasion impacts from vehicle transits across the intertidal as much as possible.	Low pressure vehicles will be used as industry best practice measure for works on mudflats. The use of low-pressure bearing vehicles has been added to commitment B67 in an update to Application Document 9.84 Register of Environmental Actions and Commitments (REAC)/other control document submitted at Deadline 4A . Of the main equipment proposed, excavators and tractors are low ground pressure bearing. 4WD's can be run with reduced tyre pressure if required, but they are not expected to be frequently used in the area.
14	Section 7	Natural England notes that no consideration has been given to the Operation and Maintenance phase and the potential for Saltmarsh accretion to have occurred.	Natural England advises that a commitment is made to only undertake cable repairs/replacement activities where it can be demonstrated that there will be no significant impacts to intertidal saltmarsh at the exit pit or along intertidal transit route. Where this is not possible a separate marine licence and updated assessment of impacts will be required.	The potential for seaward accretion of the saltmarsh is naturally limited by tidal height and sea level rise but should it occur any repairs that would need to be done would not use any of the saltmarsh habitat for access and the same measures deployed during construction would be adopted.
15		Natural England notes that HDD has been assessed as the Worst-Case Scenario. However, the other non-trenchless techniques listed come with their own impacts which will require further assessment if they are to be used.	Natural England advises that the final Landfall Construction Method Statement should be agreed with regulators in consultation with relevant SNCB within which it must demonstrate that the potential impacts are no greater than predicted and any divergence will need a further assessment prior to construction and where necessary further permissions sought.	HDD has been selected as the preferred methodology for the Kent and Suffolk Landfalls because it offers greater flexibility to adapt to ground conditions during drilling than alternative trenchless methods. HDD provides the ability to redrill on parallel or deeper alignments with no, or minimal, change required in positioning of surface equipment. In the unlikely event that repeated attempts at installation of ducts using HDD fails (and in accordance with paragraph 2.8.229 of NPS EN-3 (UK Government, 2023)), the mitigation plan is to install with alternative trenchless options. Appendix A Landfall HDD Feasibility Technical Note of Application Document 7.3 Design Development Report [APP-321] identifies Direct Pipe as the most feasible alternative trenchless methodology for the landfalls at Suffolk (Section 2.5.1 of Application Document 7.3 Design Development Report [APP-321]) and Kent (Section 3.6.1 of Application Document 7.3 Design Development Report [APP-321]). The document identifies Microtunnelling as an additional alternative trenchless method. The trenchless alternatives of Direct Pipe and Microtunnelling options would utilise the same entry and exit points as HDD, with the ducts passing at depth below the intertidal and coastal habitats between entry and exit. The Direct Pipe and Microtunnelling methods require less onshore plant and machinery and similar, or

Reference	Section	Key Concern and/or update	Natural England's Advice to Resolve Issue	Applicant's Comments
				less, offshore/nearshore plant, machinery and vessels. The construction programme for Direct Pipe and Microtunnelling is shorter than for HDD because the ducts are installed in a single pass; compared to the two or more passes required to enlarge an HDD bore to the final diameter. Therefore, the alternative mitigation plan will not result in any greater environmental impacts than the HDD trenchless technique, satisfying the least impactful alternative requirement.

Table 3.7 Applicant's Comments on the Natural England Appendix C3A [REP3A-026]

Reference	Matter	Point Raised	Applicant's Comments
Natural England's advice on the Development Consent Order. Document Reviewed: Schedule of Changes Version 2 – change Request Version			
C1	Table 3.1 Page 21, Point 1	The changes here to include a definition of offshore commerce are appreciated. However, Natural England notes that pre commencement activities are excluded from the definition of commerce. However, offshore preparation works definition states: "Offshore preparation works" means surveying and monitoring activities seaward of MHWS undertaken prior to the commencement of construction to prepare for construction, including pre-lay grapnel run". Natural England queries if this means that pre lay grapnel runs are included within the definition of offshore preparation works or if this was intended to indicate they were specifically excluded. We currently interpret it as included within the definition and would raise concerns on this as pre lay grapnel runs can be significantly damaging works and should be captured within the definition of "commerce" to ensure appropriate mitigation is in place prior to these works commencing.	The Applicant is reviewing the definition of "commerce" and "offshore preparation works" to clarify this point and agrees that some amendment may be required, however it should be noted that it is the Applicants position that PLGR is not included within the Seasonal Restriction for Red Throated Diver. The Applicant confirms that Application Document 3.1 (F) draft Development Consent Order [REP3-006] will be updated and submitted at a later deadline.
C2	Table 3.1 Page 23 Point 5.	Natural England notes and welcomes the changes to the Arbitration provision and consider that this resolves the concerns we had previously raised with this Article.	This is noted by the Applicant.
C6	Table 3.1 Page 27 Point 12	Natural England notes and accepts the split of plans between the onshore and offshore requirements. However, we note that the relevant SNCB is not named as consultee on these documents.	This is noted by the Applicant.

Table 3.8 Applicant's Comments on the Natural England Appendix E3A [REP3A-027]

Reference	Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
Natural England's response on: Benthic Document Reviewed: [AS-008] 6.6 Report to Inform Habitats Regulations Assessment (Version B)				

Reference	Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
1	Ex1.4.5	Based on the comments Natural England has provided below; we are unable to agree with the HRA conclusions. We also consider that not all impact pathways of effect on sensitive designated site features have been identified.	Owing to the uncertainty of risks posed by construction and operational activities at the Kent landfall to ecological receptors, we are currently unable to agree with the conclusions of the HRA. We advise that all pathways of effect on sensitive designated site features should be identified and considered. Please see additional comments provided below for explanation. Please see Appendix J3a to Deadline 3a submission on intertidal ecology at the Kent Coast.	The specific comments relating to this have been responded to in the rows below.
4	4.3.45	It is stated that concrete mattresses may be placed at the trenchless entry/exit points in the upper and intertidal mud/sandflat areas at the Kent landfall, and these have the potential to provide suitable substrate for colonisation by INNS. However, we query whether use of a moonpool or prefabricated cofferdam [REP1-108] may also have the potential to introduce INNS at the Kent landfall and, in turn, present a potential impact pathway to designated site features?	Natural England advises that further clarity in relation to the potential to spread INNS is required.	<p>Application Document 7.5.12 (B) Outline Offshore Invasive Non-Native Species Management Plan [REP1-027] sets out the measures that will be implemented to minimise the potential for the introduction and spread of INNS. This will apply to all works including activities in the intertidal area associated with the Kent Landfall. In accordance with this plan, all equipment and materials brought to site including moonpools or prefabricated cofferdams will be required to comply with processes and procedures to ensure that there is no potential for the introduction of any INNS. Moonpool or a prefabricated cofferdam are unlikely to be constructed from material that would be suitable for settlement and spread of INNS as this could impact the structure integrity and performance of the structure. Any materials used will also be required to comply with the final Offshore Invasive Non-Native Species Management Plan. Furthermore these structures are in place for a very short period of time (four months) which is unlikely to be sufficient for the establishment and subsequent spread of INNS. The Applicant has also prepared Application Document 7.7 (C) Marine Biosecurity Plan, updates to which have been submitted at Deadline 4. This plan supports Application Document 7.5.12 (B) Outline Offshore Invasive Non-Native Species Management Plan [REP1-027] by providing a framework for preventing the introduction and spread of marine INNS during the construction, operation and maintenance, and decommissioning phases of the Proposed Project.</p>

Document reviewed: [PDA-037] 9.20.1 Landfall Sediment Modelling Report Aldeburgh

3	Figure 1, and Sections 1.2 & 3.5.2	<p>Further to our Relevant Representation advice [RR-3290], we note that all three HDD exit options appear to be located in areas where Coralline Crag is present yet there is no assessment of potential impacts on the Coralline Crag due to the HDD or cable installation at landfall.</p> <p>We draw the ExA's attention to previous energy projects including Sizewell C and East Anglia 1N and East Anglia 2 which have all designed their projects to avoid impacts to this unique irreplaceable geological feature</p>	<p>Natural England advises that potential scale of the impacts to the crag needs to be clarified. We also advise that potential impacts on the Coralline Crag due to cable installation and HDD need to be fully assessed and evaluated. Furthermore, we advise that impacts to the Coralline Crag should be avoided and/or minimised when selecting the marine exit site and onwards with cable installation works. And where installation impacts can't be avoided to the crag we advise that there is a further assessment of placement of cable protection in this location due to potential scouring of the feature and disruption to sediment transport.</p>	<p>The updated assessment (Application Document 6.2.4.1 Part 4 Marine Chapter 1 Physical Environment, submitted at Deadline 4) includes consideration of the horizontal directional drilling (HDD) in terms of hydrodynamics and sediment regime impacts:</p> <p>It should be noted that there will be no use of a cofferdam at the Suffolk landfall site.</p> <p>Impact of protection at HDD breakout at Suffolk landfall:</p> <ul style="list-style-type: none"> The nearshore seabed is considered to have low sensitivity as the bed is expected to naturally recover via natural sediment transport processes driven by the wave and current action in shallow waters after one or two tidal cycles. The placement of protective measures at the HDD breakouts will be temporary. The rock bags/concrete mattresses may be present on the seabed for a few months depending on the finalisation of the installation programme. Any interference with sediment transport pathways will therefore
---	------------------------------------	--	--	---

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
	<p>only found in the area around Aldeburgh and Orford.</p> <p>In [AS-114] it is stated that the HDD exit point will target an exit location that will be designed such that there is not a risk of exiting where the Coralline Crag is at the surface. It is also stated that during detailed design, the HDD contractor will microsite the exit points based on seafloor surveys and ground investigations.</p> <p>However, in [PDA-037] it is stated that all 3 potential points will go through the crag, and it is not stated whether drilling through this geological feature may have any impacts on the crag.</p>		<p>be relatively short-term and once removed, a return to pre-installation conditions can be expected.</p> <ul style="list-style-type: none"> Post-installation protection such as rock bags/concrete mattresses would then be added to stabilize the HDD exits, replacing the existing temporary protection. This protection would be buried below the seabed and therefore will not interfere with hydrodynamic or sediment transport patterns. Coralline Crag (CC) outcrops are geologically resistant features that are already exposed to the influence of currents and wave action. Consequently, scouring of the CC cannot be considered in the same way as mobile seabed material. <p>The REAC (Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078]) includes a commitment (GH14) that the HDD breakout will be located to the east of the CC outcrop specifically to avoid damaging this important feature.</p> <p>Response 1PE7 in Application Document 9.73 Applicant's Responses to First Written Question [REP3-069] shows the HDD exit locations to the east of the continuous crag outcrops.</p> <p>Integrity of the HDD bore beneath Coralline Crag outcrops:</p> <p>The integrity of the CC outcrops will not be compromised by sub-seabed HDD cable installation. As described in Appendix A of Application Document 7.3 Design Development Report [APP-321], the coralline crag is a weakly cemented, slightly gravelly very silty sand with frequent shell fragments, that is expected to form a stable borehole. The HDD will be designed at sufficient depth to ensure that it is within competent ground beneath the crag outcrops to ensure that the surface outcrops are unaffected by the HDDs.</p> <p>The applicant confirms that a Coralline Crag Technical Note (Application Document 9.113 The Coralline Crag Technical Note) has been submitted at Deadline 4 which provides a more detailed plan of the HDD exits at the Coralline Crag at the Suffolk Landfall.</p>

Document reviewed: [REP1-054]: 6.2.4.2 (C) Part 4 Marine Chapter 2 Benthic Ecology (Tracked) & AS-021: 6.2.4.2 (B) Part 4 Marine Chapter 2 Benthic Ecology (Tracked Changes).

1	2.9.16	<p>Updates to the ES chapter suggest that disturbance to intertidal mudflats at Kent landfall will be 'undetectable after a single, or at most, a few tidal cycles.'</p> <p>However Natural England remains uncertain as to whether this is likely as compression impacts upon mudflats can influence infaunal communities, sediment characteristics and trophic functioning (Mawson et al. 2026) and recovery seems unlikely within stated timeframe.</p>	<p>Natural England advises that the Applicant should secure appropriate post-consent monitoring in the outline IPMP to ensure full recovery of mudflats agreed by the regulator in consultation with Natural England. Remedial actions should be required in the event that full recovery does not occur.</p>	<p>Low pressure vehicles will be used as a best practice and engineering led measure for works in the intertidal at Pegwell Bay. The vehicles to be used are provided in Application Document 9.13 Pegwell Bay Construction Method Technical Note [REP2-011].</p>
				<p>For clarity, the use of low-pressure bearing vehicles has now been added to commitment B67 in an update to Application Document 9.84 Register of Environmental Actions and Commitments (REAC) which will be submitted at Deadline 4A. Of the main equipment proposed, excavators and tractors are low ground pressure bearing. In addition, 4 wheel-drive vehicles can be run with reduced tyre pressure if required, but they are not expected to be frequently used in the area.</p> <p>The rapid recovery expected reflects the low pressure nature of the vehicles that will be present on the mudflats during construction. Reference was also made to practical experience of Walney Offshore Wind Farm (OWF) cable installation in the intertidal where vehicle footprints typically disappeared after one tidal cycle.</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
			<p>The Applicant welcomes the reference to additional scientific evidence and have reviewed the Mawson et al., 2026 paper mentioned but finds the comparison to the sediment conditions observed in this study to be flawed. This study concerns the ghost shrimp <i>Neotrypaea californiensis</i>, which lives in burrows they create in sub-surface sediments (see image below), specifically looking at the potential effect of vehicles on the estuarine mudflats as a means of pest control, by ensuring collapse of their burrows. Ghost shrimp are a significant pest species, often found in very high densities, which has a significant effect on the structure of sediments, making them much more vulnerable to compaction due to the presence of very large burrow spaces. The mudflats at Pegwell Bay are dominated by sand, rather than mud, and do not support species that create similar burrows that would compromise the structural integrity of the sediments. In the Mawson study responses of infauna appeared only in the experiments where compaction reduced shrimp densities. Also, habitat use by waterbirds was found to be more influenced by tidal stage than by compaction. These findings support the assessment of temporary disturbance at Pegwell Bay to be not significant.</p>
2 2.9.19, 2.9.68, 2.10.2	<p>Natural England welcomes the commitment to conduct pre-construction surveys to inform final cable route design and installation, and possible impacts upon habitats of principal importance are identified, prepare a Benthic Mitigation Plan, in consultation with stakeholders –secured through the REP1-103, 7.5.3.2: CEMP Appendix B Register of Environmental Actions and Commitments (REAC).</p> <p>However, revisions of the document have deleted previous commitment to micro-route the cable to avoid and minimise interactions with any habitats of conservation importance identified during pre-construction surveys.</p> <p>Following the mitigation hierarchy, impacts should first be avoided,</p>	<p>Partially addressed.</p> <p>Natural England requests clarification as to why the commitment to micro-route the cable to avoid or minimise impacts upon habitats of conservation importance have been removed.</p> <p>Whilst commitments to prepare a mitigation plan are welcome, the mitigation hierarchy should be followed which sets out that impacts should first be avoided wherever possible. Securing commitments to avoid sensitive features through micro-siting of the cable wherever possible would resolve this issue.</p>	<p>The routing and siting work for the Proposed Project demonstrates a strict adherence to the mitigation hierarchy, ensuring that the Project avoided the benthic habitats protected by the Margate and Longsands SAC and the Goodwin Sands Marine Conservation Zone (MCZ). On the basis of the final routing design the impact assessment determined no significant impacts to any benthic habitat would occur and thus the requirement for micro-routing was removed.</p> <p>However, the Applicant confirms that BE06 in the REAC (Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078]) gives the following commitment: where benthic habitats of principal importance are identified (qualifying as Annex 1 or NERC S41 habitats) during pre-construction surveys and mitigation is required to avoid or reduce impacts on these habitats, an In-Principle Monitoring Plan (IPMP) will be prepared in consultation with the Marine Management Organisation (MMO) and Statutory Nature Conservation Bodies (SNCBs) to verify the accuracy of predicted residual impacts on these habitats.</p> <p>Further detail is provided within AP32 Application Document 9.90 Applicant's Response to January Hearing Action Points, submitted at Deadline 4.</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
3	2.7.5 before mitigation of impacts are considered.	Partially addressed. Natural England advises that further evidence is required to support the conclusions of the ES that no <i>Sabellaria spinulosa</i> reef was observed by subtidal surveys within the Offshore Scheme.	<p>The ross worm <i>Sabellaria spinulosa</i> was found in the grab samples at 16 sites, and aggregations were observed in the video from transect T004 but were assessed not to cover a large enough area to be classified as a reef under Annex I. The low visibility limited the assessment, and it is largely based on the grab samples combined with geophysical data. However, a notable abundance of <i>S. spinulosa</i> tubes was observed at S009 only. This was the only station with <i>S. spinulosa</i> density above 375 individuals per 0.1 m², which is reported (FosterSmith and Sotheran, 1999 in Limpenny et al.) to be associated with reefs. However, the S009 samples did not contain clumps of <i>S. spinulosa</i> and it was observed as present as encrusting habitat only, not reef, with some overgrowth by <i>Mytilus edulis</i>. Both T004 and S009 are in the northern extent of the cable corridor and are not within a designated site or anywhere near Goodwin Sands MCZ.</p> <p>The cable corridor completely avoids Goodwin Sands MCZ. Goodwin Sands MCZ is designated for <i>Sabellaria spinulosa</i> and analysis all multiple data sets by the survey contractor, who have extensive experience in benthic habitat analysis, using all geophysical, DDV and grab sample data in this area, and subsequent analysis of those data, indicated that <i>Sabellaria spinulosa</i> reefs were not present within the LOD.</p> <p>The Goodwin Sands MCZ Features map shows that <i>Sabellaria</i> reefs are concentrated in the southern region of the MCZ ~ 6.6 km away from the cable corridor, and thus the lack of evidence of any reefs found in the 3.2 km stretch of the cable corridor next to Goodwin Sands MCZ is consistent with this observed distribution.</p> <p>The Applicant confirms that BE06 in the REAC (Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-079]) gives the following commitment: where benthic habitats of principal importance are identified (qualifying as Annex 1 or NERC S41 habitats) during pre-construction surveys and mitigation is required to avoid or reduce impacts on these habitats, an In-Principle Monitoring Plan (IPMP) will be prepared in consultation with the MMO and SNCBs to verify the accuracy of predicted residual impacts on these habitats.</p>
4	2.9.10, 2.9.11 The Applicant has updated the sensitivity assessment for <i>Sabellaria spinulosa</i> reef and <i>Mytilus edulis</i> beds to 'medium' sensitivity from physical disturbance, as per Natural England's previous advice. This addresses concerns raised within E24 of the R&I log.	Issue can be considered resolved .	Closed.
5	2.7.9 Having, reviewed the updates, Natural England advises that it remains unclear as to the presence and distribution of blue mussel <i>Mytilus edulis</i> beds across the Offshore Scheme. In addition, Natural England disagrees with the updates which conclude that blue mussels have been recorded in patches, rather than continuous reef. Insufficient	Partially addressed. Natural England advises that further evidence and clarification of the presence and distribution of blue mussel beds is required to support the conclusions of the ES. Natural England also advise that pre-construction surveys to identify the presence and distribution of blue mussel beds across the Offshore Scheme should	<p>The Offshore Scheme completely avoids the Goodwin Sands MCZ, which is designated for a number of benthic habitats including mussel beds. Analysis of multiple data sets – geophysical, drop down video and grab sample data - by the survey contractor, who have extensive experience in benthic habitat analysis, provides detailed evidence that mussels were present only in patches Application Document 9.5 Subtidal Survey Report (Additional Surveys) [AS-035]. There were three patches in the transects that were identified as a potential mussel bed but they were not determined to be Annex 1 reef.</p> <p>The Goodwin Sands MCZ Features map shows that mussel beds are concentrated in the southern region of the MCZ ~ 15 km away from the cable corridor, and thus the lack</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
	<p>evidence is provided to support this conclusion, and it is advised that the areas in question should be considered to be blue mussel beds, a Section 41 Habitat of Principle Importance, unless demonstrated otherwise.</p>	<p>be secured through the In Principle Monitoring Plan (IPMP).</p>	<p>of evidence of any extensive mussel beds found in the Offshore Scheme is consistent with this distribution.</p> <p>The Applicant understands the importance of sensitive benthic habitats and has made commitment BE06 in the REAC (Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-079]) that where benthic habitats of principal importance are identified during pre-construction surveys and mitigation is required to avoid or reduce impacts on these habitats, an In-Principle Monitoring Plan (IPMP) will be prepared in consultation with the MMO and SNCBs to verify the accuracy of predicted residual impacts on these habitats.</p>
6	<p>Natural England strongly disagrees with addition of new text which suggests that soft rock habitats (e.g. subtidal chalk and peat and clay exposures) have medium sensitivity to temporary disturbance. Subtidal chalk and peat and clay exposures are considered irreplaceable habitats (Tillin et al. 2022) and will not recover from physical abrasion / removal impacts, in particular. Therefore, Natural England strongly disagrees with the medium sensitivity scores for these habitats of principal importance.</p>	<p>Natural England advises that the document should be updated to reflect the highly sensitive nature of soft rock habitats abrasion and physical loss. Natural England advises that every effort should be made to avoid physical impacts to these habitats where possible. This is particularly the case where habitats support rare and/or irreplaceable communities such as boring piddocks. Where impacts cannot be avoided, we advise that evidence will need to be presented to demonstrate how impacts has been minimised as much as possible.</p>	<p>The Applicant recognises the highly sensitive nature of these habitats. The sensitivity rating, as detailed in the approach and methodology to assessments in Section 2.4 in Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology, submitted at Deadline 4, is a combination of the sensitivity or vulnerability of the receptor to the specific impact pathway AND the conservation value or importance of that receptor. Thus, habitats specifically protected by designated sites are recognised to be the areas of highest importance. Peat and clay exposures, and soft chalk are irreplaceable habitats and highly sensitive to physical disturbance. However, as areas that are not specifically protected and have not been observed to be high quality examples of these habitats, the overall sensitivity rating is medium. The Applicant has updated paragraph 2.9.9 to clarify how the final sensitivity rating was determined.</p> <p>In recognition of such sensitive habitats, the Applicant has made commitment BE06 in the REAC (Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-079]) that where benthic habitats of principal importance are identified during pre-construction surveys and mitigation is required to avoid or reduce impacts on these habitats, an In-Principle Monitoring Plan (IPMP) will be prepared in consultation with the MMO and SNCBs to verify the accuracy of predicted residual impacts on these habitats.</p>
7	<p>Natural England previously raised that the EIA fails to consider potential impacts to 'outcropping clay and soft chalk.' These habitats are protected as Section 41 Habitats of Principal Importance (NERC Act 2006) and are considered irreplaceable (Tillin et al., 2022)</p> <p>Natural England notes that the Applicant has provided additional information to consider impacts upon subtidal chalk and peat and clay exposures (Section 41 habitat). The Applicant has also committed to complete pre-construction surveys to inform final cable route and installation, and prepare a Benthic Mitigation Plan, in consultation with stakeholders.</p>	<p>Consider this issue to be partially resolved.</p> <p>Natural England advises that further clarification on the presence and extent of these soft rock habitats would help to inform a quantitative assessment of impacts.</p> <p>Following the mitigation hierarchy, it is advised that impacts should be avoided by micro-siting and other avoidance measures wherever before mitigation measures are considered.</p>	<p>The Applicant has made commitment BE06 in the REAC (Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-079]) that where benthic habitats of principal importance are identified during pre-construction surveys and mitigation is required to avoid or reduce impacts on these habitats, an In-Principle Monitoring Plan (IPMP) will be prepared in consultation with the MMO and SNCBs to verify the accuracy of predicted residual impacts on these habitats.</p> <p>The new best practice advice (Parker et al., 2025a) will be used in the assessment of <i>Sabellaria spinulosa</i> reef based on data collected during the pre-construction surveys. Consultation with Natural England will be undertaken to agree the habitat assessment methods.</p> <p>Two subtypes of 'Communities on soft circalittoral rock' (A4.23) - clay outcrops and soft chalk, were identified in the Offshore Scheme as potentially present in the Offshore Scheme on the basis of geophysical data.</p> <p>Clay outcrops</p> <p>This habitats was mapped as such habitat as interpreted, on a precautionary basis predominantly on the basis of geophysical data, but where ground-truthed were not indicative of habitats representative of high-quality examples of this habitat that support biodiverse faunal communities.</p> <p>These were observed in data collected indicated the presence of scattered patches areas of outcropping clays or clay covered by a thin veneer of sediment, primarily in the northern and central parts of the route between KP7.5 and KP95.8, with similar features located towards the Suffolk landfall, between KP0.9 to KP1.5, in nearshore areas</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
	<p>Whilst further information has been provided, Natural England advises that the distribution and extent of outcropping clay or subtidal chalk within the Offshore Scheme remains uncertain.</p> <p>Natural England also welcomes the commitment to complete pre-construction surveys and, if required, a Benthic Mitigation Plan. However, outcropping clay and subtidal chalk are considered irreplaceable habitats and will not recover if physically damaged.</p>		<p>(Application Document 6.3.4.2.A ES Appendix 4.2.A Benthic Characterisation Report (Original Report) [APP-196]).</p> <p>The habitat 'Peat and clay exposures' is distributed along the south and east coast of England, in intertidal areas, but little is known of the subtidal extent. The habitat can be difficult to assess with regards to distribution and extent due to periodic coverage of mobile sediments and subsequent emergence. 'Peat and clay exposures' are listed as 'Habitats of Principal Importance' under Section 41 of the NERC Act (2006) (Table 2.14). The biotope complex is also recognised as an irreplaceable habitat, particularly where the soft peat and clay supports a distinct biological assemblage, such as piddocks and red algae (Tillin, Watson, Tyler-Walters, Mieszkowska, & Hiscock, 2022).</p> <p>The extent and distribution of these habitats within the Offshore Scheme was very patchy, and their observable presence is known to be subject to change as surrounding mobile sediments shift, covering and exposing various sections of clay. Where there is periodic coverage of a veneer of sediments this limits the presence of many species in these habitats and the development of the diverse communities that are of particular conservation importance. No biotopes indicative of complex biological habitats on peat and clay exposures were observed.</p>
8	<p>2.9.56 – 2.9.63</p> <p>Natural England previously raised that all benthic receptors are highly sensitive to habitat loss and that the EIA should be updated.</p> <p>The Applicant has updated the sensitivity of some habitats to high sensitivity to direct loss, following Natural England's advice.</p> <p>However, 2.9.60 sets out that 'communities on circalittoral rock' (subtidal chalk and peat and clay exposures) and 'subtidal sand and gravels' only have medium sensitivity to physical habitat loss as a result of cable and scour protection, unless they support diverse epifaunal communities.</p> <p>Natural England disagrees with this conclusion and advise that these Section 41 Habitats of Principal Importance have high sensitivity to physical loss of habitat.</p> <p>In addition, subtidal mud has been determined to have medium sensitivity to permanent habitat</p>	<p>Consider this issue to be partially resolved, but issues remain outstanding.</p> <p>Natural England advises that the EIA (and where relevant, RIAA) should be updated with a more appropriate evidenced evaluation and assessment of the permanent loss of benthic habitats.</p>	<p>The Applicant agrees that all benthic habitats will be highly sensitive to removal and habitat loss. The difference in the sensitivity rating allocated in the chapter reflects the detail of the impact assessment methodology. The impact assessment methodology outlines how the sensitivity RATING is based on a combination of vulnerability (also called sensitivity) of a receptor to a particular pathway AND the importance/value of the receptor from a conservation perspective mostly. See paragraphs 2.4.58 – 2.4.59 in Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology, submitted at Deadline 4. This then determines that a habitat, such as a NERC S41 habitat, specifically protected within a designated or protected has a higher value (and probably sensitivity) rating than the same habitat that is not specifically designated. Habitats without any kind of status and that are very common and widespread would be of low value. The overall sensitivity rating is then determined based on these two factors.</p> <p>To remove any lack of clarity regarding the determination of the sensitivity of these habitats paragraph 2.9.157 has been updated in Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology, submitted at Deadline 4.</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments	
9	2.9.32 loss. Natural England disagrees with this, as per previous advice.	Natural England notes the addition of text considering suspended sediment concentration (SSC) and deposition upon features of the Thanet Coast SAC. Natural England's Advice on Operations within the Thanet Coast SAC provides sensitivity scores between 'Medium' and 'Not sensitive' for reef biotopes to smothering and siltation rate changes. Whilst currently assessed as 'Low' sensitivity, Natural England advises that the sensitivity of reef subfeatures should be assessed as 'Medium,' following the precautionary principle, unless further evidence is provided.	Consider this issue to be partially resolved. Natural England advises that the sensitivity information for reef features within the Thanet Coast SAC to 'Medium' sensitivity to suspended sediment concentrations and deposition is updated in line with the precautionary principle, unless further evidence is provided regarding the specific biotopes present within the site, and that impacts are mitigated accordingly.	On a highly precautionary basis paragraph 2.9.32 of Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology has been updated and submitted at Deadline 4 to increase the sensitivity for the Thanet Coast reef biotopes rating to medium. The impact assessment has also been reviewed. However, the magnitude of the effect remains the same – the effect is short term and temporary in terms of both predicted SSC and deposition, particularly as these features of the SAC are some distance from the footprint of effect. Thus, the magnitude rating and impact significance has not changed. This is considered robust, particularly when considering the sensitivity benchmark for this habitat in relation to SSC is 'A change in one rank on the Water Framework Directive WFD scale e.g. from clear to intermediate for one year and where the duration of any increase in SSC from the Proposed Project will be minutes/hours) and as stated in Application Document 6.2.4.1 (D) Part 4 Marine Chapter 1 Physical Environment [REP3-020] . Any sediment accumulations resulting from cable installation activities are predicted to be 0.5 mm in depth which is unlikely to be distinguishable.
10	Table 2.17 and 2.9.66 Natural England notes discrepancies between the requirement for rock berms across the length of the Offshore Scheme within updated documents stating an increase from 9.84% to 15%.	Natural England requests clarification on the worst-case scenario (WCS) from rock berms to resolve discrepancy and that documents are updated accordingly.	What follows is a detailed explanation of the difference between the two percentages, which are both correct, being based on exactly the same MDS for remedial rock protection but vs different proportions of the cable route. The Applicant has identified that there are certain 'high-risk' areas along the route where, additional protection is required e.g. in areas of high shipping activity. Within these high-risk areas the Applicant will use rock backfill to protect the cable. This backfill is required in order to protect the cable from anchor strikes in areas of increased vessel activity. This backfill will not overtop the trench (below the original seabed level) which would limit impacts through scour. The high-risk areas that have been identified as requiring rock backfill are between KP 35 to KP 58, and KP 81.5 to KP 96.5. Thus, in total rock back-fill will be required along 38 km of the total cable length. The remaining 82 km of cable route are considered to be low risk areas. The Applicant has assessed a MDS for cable protection of up to 15% (12.3 km) remedial rock protection (rock berms) in these low risk areas. However, as detailed above this is highly precautionary for assessment purposes as the plan is to bury the cable. This remedial rock protection will only be required in areas where target Depth of Lowering (DOL) and natural backfill is not achieved. Therefore, the location of any remedial works cannot be mapped at this stage. The requirement for remedial rock berms would be established through post-installation surveys of the 'as built' cable where natural back fill has not been sufficiently rapid for the section of route. Regarding reference to 9.84% in paragraph 2.9.62 of Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology submitted at Deadline 4 the text states "rock berms may be required over a length of 12 km (9.84% of the Offshore Scheme) (Table 2.17)". This calculation is based on 9.84% of the entire cable route of 120 km which is 12 km. However, 38 km of the route that is high risk and will have rock backfill and no additional remedial rock protection (rock berms). The figure of 15% referred to in Application Document 6.4.4.2 (B) Environmental Statement Figures Marine	

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
			<p>Benthic Ecology [REP1-067] is 15% of the remaining 82 km (low risk areas) which is also 12 km. The Applicant therefore confirms that the discrepancy is related to the presentation of the information – vs the entire route or vs the low-risk areas of the route - rather than an increase in the amount of rock protection required.</p> <p>However, to remove any potential for confusion the 9.84% value has been removed and replaced with 15% as the percentage for MDS remedial cable protection for low risk areas, in paragraph 2.9.66 of Application Document 6.4.4.2 (B) Environmental Statement Figures Marine Benthic Ecology [REP1-067].</p>
11	Table 2.17	<p>Additional information has been provided for the assessment of construction works at the Kent landfall site.</p>	<p>Issue can be considered resolved. However, issues remain outstanding please see Appendix JB3a of our Deadline 3a submission</p>
Document reviewed: [REP1A-004]. 6.2.1.4 (D) Part 1 Introduction Chapter 4 Description of the Proposed Project (Tracked).			
1	Table 4.17	<p>Natural England notes a substantial increase in the proposed quantity of rock backfill in 'High Risk trench areas' included within document updates, which include changes from 17,100 m² to 45,600 m² (increase of 167%). Natural England advises this represents a major change to maximum design scenario (MDS) and Project WCS. No justification or rationale has been provided to justify the change. Natural England has concerns for impacts upon benthic receptors from the significant increase in rock backfill.</p>	<p>Natural England advises that justification is required for why the required quantity of rock backfill has increased dramatically. Further information should be provided on where this rock backfill will be placed and the predicted total areas of permanent and/or temporary habitat loss and/or disturbance within and outside of designated sites.</p> <p>Natural England also advises that as part of considering mitigation measures to minimise the impacts the Applicant should also consider the use of cable protection which is more readily removable such as rock bags and concrete mattresses. This is particularly a concern within/adjacent to designated sites.</p> <p>The Applicant can confirm that a simple calculation error was identified in the calculated area of rock back-fill presented in Table 4.17 of Application Document 6.2.1.4 (D) Part 1 Introduction Chapter 4 Description of the Proposed Project [REP1A-003]. To confirm rock back-fill is required along 38 km of the total offshore route. The total maximum width of the cable trench is 1.2 m which results in a total area of 45,600 m² (i.e. 1.2 m x 38 km) which is the maximum design parameter for the area of rock back-fill. The calculated total volume of rock back-fill has not changed.</p> <p>The correct maximum area of rock back-fill was updated and a reassessment considered in Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology submitted at Deadline 4. This concluded that the increase as a result of the error was small in relation to the overall assessment and did not change the conclusions of an impact rating of not significant in the assessment.</p>
2	Table 4.16	<p>Natural England also notes that the Applicant has refined the cable trench width minimum and maximum parameters by 0.3 m. However, no further changes have been made to refine the Rochdale Envelope to minimise environmental impacts of the WCS.</p>	<p>Natural England advises that further refinement of the Rochdale Envelope is required to reduce environmental impacts and uncertainty.</p> <p>The change in cable trench parameters was a correction rather than a refinement. All parameters linked to cable trench width including cable protection have remained unchanged except for the re-calculated area of rock back-fill (see response above). No other parameters are affected by the correction and there are no changes to any of the conclusions presented in Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology submitted at Deadline 4 resulting from the changed parameters.</p>
3	Table 4.13 Table 4.9	<p>Natural England highlights that no changes have been made to reduce ambiguity regarding maximum design scenario (MDS) commitments for sandwave clearance activities.</p> <p>However, Table 4.9 specifies that only one cable trench will be required for the offshore scheme,</p>	<p>Further information is required in relation to the proposed sandwave clearance activities due to the ambiguity around the project design MDS. The following issues need to be considered and clarified:</p> <ul style="list-style-type: none"> MDS location of sandwave clearance works Impact pathways for benthic receptors <p>The Applicant can confirm that the locations where it has been identified that there could be a requirement for pre-sweeping (sandwave clearance) remains as presented in Table 4.13 of Application Document 6.2.1.4 (D) Part 1 Introduction Chapter 4 Description of the Proposed Project [REP1A-003] and this has been used to inform the assessment of impacts presented in Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology submitted at Deadline 4.</p> <p>The MDS for sandwave levelling in the Offshore Scheme is between KP96.32 to KP113.883. Sandwave levelling MDS is for within the Offshore Scheme LOD only and does not extend beyond. Confirmation of these locations is also provided in Application</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
	<p>which indicates that the presented sandwave MDS is for one trench only. However, upon review of the Marine and Coastal Processes chapter (6.2.4.1 (C) Part 4 Marine Chapter 1 Physical Environment (Tracked)) we do not believe this is the only place where sandwave levelling is required. Please see Appendix D3 to our Deadline 3 response.</p>	<p>Location and impacts in relation to protected sites</p>	<p>Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4.</p> <p>The areas identified are based on data collected from geophysical and geotechnical surveys and input from cable design and installation engineers. The Applicant is therefore confident that the locations identified and assessed are correct and that no other locations have been identified that require pre-sweeping / sandwave levelling. Given that there are no additional locations identified for pre-sweeping or sandwave levelling the Applicant considers that the MDS for the location of sandwave clearance works has been fully assessed and that all impact pathways have also been assessed.</p> <p>As set out in Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology submitted at Deadline 4 the total area of seabed that will be directly impacted by pre-sweeping is 0.36 km² based on a 20 m swathe along the cable route (e.g. 113.883-96.32 = 17.563 km x 0.02 km = 0.36 km² rounded up). The total volume of sediment identified as requiring levelling is 250,000 m³ and therefore is of limited spatial scale and magnitude. Given that no pre sweeping locations are located within any sites designated sites for benthic features, no habitats of conservation importance have been identified within the cable corridor, and that where the seabed is distributed (directly) or subject to sediment deposition, habitats and species present in the affected areas are expected to recover rapidly, it is concluded that potential effects of pre-sweeping activities will be minor and not significant.</p> <p>There will be no sandwave levelling in any designated or protected site that is designated for benthic habitats.</p> <p>It is noted that KP96.32 to KP113.883 is located within the Outer Thames Estuary (OTE) SPA. Pre-sweeping has been identified as one of the activities that are subject to a seasonal restriction and therefore will not impact the red throated diver feature of this designated site. While there is potential for pre-sweeping to impact supporting benthic habitats, these impacts will be short term and of limited magnitude and will also occur outside the key overwintering period for RTD. Therefore, there is no potential for any adverse effects on the OTE SPA.</p> <p>Although there is potential for pre-sweeping to occur along the section of the cable route that runs adjacent to the Goodwin Sands MCZ, potential effects to protected features and habitats located within the MCZ are limited. All material from pre-sweeping will be deposited within the cable corridor (Order Limits) and over time will redistribute within the marine environment via sediment transport processes.</p> <p>As discussed in Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4, there is potential that pre-sweeping as part of route preparation will lead to the temporary disturbance of seabed sediment and a localised, short-term increase in suspended sediment concentrations (SSC). Coarse sands and gravels are expected to be redeposited within a few metres from the point of sediment release. There is potential for finer fractions (including finer sands, silts and clays) to be transported further on prevailing tides and currents, causing SSC to decrease as particles are dispersed through the water column with water column turbidity returning to baseline conditions within a few kms. It is acknowledged that some of these finer fractions could be dispersed into the Goodwin Sands MCZ. However, where redeposition of these finer fractions occurs, due to the limited volumes of sediment released in the first place and the extent of dispersion of the particles as they transported from the point of release, the resulting accumulations will be less than 0.1 mm which is unlikely to be detectable on the field.</p> <p>As noted above, the Goodwin Sands MCZ Features map shows that <i>Sabellaria</i> reefs are concentrated in the southern region of the MCZ, approximately 6.6 km from the cable</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
4 N/A	No additional changes have been made within the Project Description relating to the Project Description to address issues raised within Natural England's Relevant Representations regarding the Project Description	Issues remain outstanding. Refer to Risk and Issues Log:	<p>corridor and the blue mussel beds are located approximately 15 km from the cable corridor. It can therefore be concluded that there is limited potential pre-sweeping/sand wave clearance to have any adverse effects on the designated features within the Goodwin Sands MCZ.</p> <p>Row 2 (E2, E12): Consideration of all potential impact pathways on intertidal and subtidal habitats.</p> <p>Application Document 6.2.4.2 (D) Part 4 Marine Chapter 4 Benthic Ecology submitted at Deadline 4 was updated to include an assessment in relation to sea caves, a designating feature of the Thanet Coast SAC. Additional information on potential impacts to "outcropping clay and soft chalk" and "peat and soft clay exposures" was also included. Further details in relation to impacts within the intertidal area at Pegwell Bay was also included in Application Document 6.2.4.2 (D) Part 4 Marine Chapter 4 Benthic Ecology submitted at Deadline 4. This was informed by information included in Application Document 9.13 (B) Pegwell Bay Construction Method Technical Note [REP2-011].</p> <p>Thus, the Applicant considers that all impact pathways for intertidal and subtidal habitats have been fully assessed and that no further assessments are required.</p> <p>Row 4 (E4, E32) = request for an explanation required as to why commitment to micro-route the cable has been removed</p> <p>This specific comments is also included in Reference 2 above and has been addressed there.</p> <p>Row 8 (E8, E52) = transparency on worst case scenario assessed for cable protection inside and outside designated sites</p> <p>The Applicant acknowledges that Natural England is seeking confirmation of the locations where rock protection will be required in order to inform an assessment of specific impacts of the rock protection in those locations.</p> <p>Further details on the cable protection requirements are outlined in Application Document: 6.2.1.4 Part 1 Introduction Chapter 4 Description of the Proposed Project. For clarity, the requirements are summarised as follows:</p> <p>Rock Backfill in High-Risk Areas (KP 38 to KP 58, and KP 81.5 to KP) (38 km): Locations are shown in Figure 6.4.1.4.3 Areas of Rock Backfill in Application Document 6.4.1.4 ES Figures Introduction Description of the Proposed Project [APP-207].</p> <p>Natural Backfill Outside High-Risk Areas (82 km): This applies to the entire route except for high-risk areas.</p> <p>Cable Protection Structures at Crossings: Includes pre and post-lay rock placement and/or concrete mattresses. Locations are detailed in Application Document 6.2.1.4 (D) Part 1 Introduction Chapter 4 Description of the Proposed Project [REP1A-003], in Tables 4.18 and 4.19 and shown in Application Document 2.14.3 Indicative General Arrangements Plans – Offshore [CR1-026].</p> <p>Remedial Rock Protection (within the trench or low height berm): Only to be used where the natural backfill rate is too slow or the target depth of lowering is not achieved. This applies to the entire route except for high-risk areas. Precise locations are unknown but expected to be minimal.</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
			<p>The Applicant has also submitted Application Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4. This document provides further information on the design of the marine cable and methods that will be used to install the cable. This also includes information on requirements for cable protection.</p> <p>However, at this stage in the design process, the precise locations where remedial rock protection is required is not known. The principal reason for this is that it is the Applicant's intention to achieve DOL and natural backfill along the entirety of the low-risk sections of the cable route, thus negating the requirement for any cable remedial cable protection. There are no plans to use remedial cable protection. However, it is essential to include for the potential use of cable protection within the DCO application so that remedial action can be taken should this be necessary (e.g. if Depth of Lowering and natural backfill is not achieved).</p> <p>As has been set out in Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4, the assessment of impacts of cable protection on sediment transport processes and longshore drift is based on the MDS approach which assumes that remedial rock protection may be required at any location along the 82 km section of low-risk part of the cable route.</p> <p>Identifying specific locations on a plan as is being requested by Natural England will not change the conclusions from the assessment that has been completed, which concludes that due to the low lying nature of the protection (berm with maximum height of 1 m) and limited spatial extent (one cable trench), and based on regional sediment transport processes that are dominant in the area, there is no potential for any significant effects.</p> <p>The approach that has been taken to the assessment based on application of the MDS is consistent with standard practice and is proportionate for the nature and scale of the development that is proposed.</p> <p>Furthermore, the Applicant has already applied the mitigation hierarchy by taking steps at the project design stage to avoid routing through any sites that are designated for benthic and sediment features, further reducing the potential for any impacts on these sites and associated protected features of these sites.</p> <p><u>Row 9 (E9) = Additional information is required in the Scour and Cable protection management plan.</u></p> <p>The Applicant has also submitted Application Document 9.92 Outline Cable Specification and Installation Plan at Deadline 4. This document provides further information on the design of the marine cable and methods that will be used to install the cable. This also includes information on requirements for cable protection.</p> <p><u>Row 11 (E11, E15) = mitigation differentiating between inside and outside sites and different types of cable protection should be assessed.</u></p> <p>In following the mitigation hierarchy during routing, in order to avoid protected benthic habitats, no cable protection will be placed within any site designated for benthic features, except at the Kent Landfall/Pegwell Bay (Sandwich Bay SAC) where cable protection will be placed at the HDD duct ends but will be buried below the level of the seabed. Direct effects on this site (Sandwich Bay SAC) and indirect effects, such as dispersion and deposition of sediments, on other designated sites have been considered in Application Document 6.2.4.2 (D) Part 4 Marine Chapter 4 Benthic Ecology submitted at Deadline 4, Application Document 6.11 (B) Marine Conservation Zone Assessment [REP1-022] and Application Document 6.6 (E) Habitats Regulations Assessment Report [REP3-028]. Indirect impacts to supporting features of the Outer Thames Estuary SPA and the Southern North Sea SAC have also been considered in</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
			<p>Application Document 6.6 (E) Habitats Regulations Assessment Report [REP3-028].</p> <p>Row 12 (E13, E22) = insufficient detail on O&M relating to rock protection and scour – further quantification of impacts required.</p> <p>Impacts as a result of rock protection and scour have been covered in full for O&M since the area of remedial rock protection in the assessment includes both construction and operation phases.</p> <p>Row 13 (E16, E36, E54) = UXO should be included in the MDS for benthic (higher order)</p> <p>The requirement for Unexploded Ordnance (UXO) clearance, and the potential for the use of low order detonation techniques, which is standard industry practice, is not currently known. Any requirement for UXO will be subject to a separate Marine Licence application and UXO specific impact assessment.</p> <p>Row 24 (E33) – Further assessment of all impacts from the cofferdam at the Pegwell Bay landfall.</p> <p>The risk and issues log states that NE are happy this specific issue has been resolved.</p>

Document reviewed: [REP1-024]. 7.7 (B) Marine Biosecurity Plan (Tracked).

1	6	<p>Natural England notes that the updated versions of this document have removed text securing up to date INNS training, biosecurity measures and embedded mitigation measures. Removed text also includes the requirement to report suspected INNS and, if necessary, take action to control present INNS.</p> <p>No justification is provided for why these measures have been removed, which could increase the risk of INNS being spread or introduced by the project.</p>	<p>Natural England advises that clarification is required as to why these measures are no longer considered necessary to restrict the spread of marine INNS.</p>	<p>The Applicant thanks Natural England for this comment. The text securing up to date INNS training, biosecurity measures and embedded mitigation measures was removed in error from Application Document 7.7 (B) Marine Biosecurity Plan [REP1-023]. There was no intention to remove any commitment to mitigation measures. These erroneous deletions have now been reversed and an updated version Application Document 7.7 (C) Marine Biosecurity Plan has been submitted at Deadline 4.</p>
---	---	--	--	---

Document reviewed: [AS-035]: 9.5 Subtidal Survey Report (Additional Surveys) - Applicants response to Section 51 Advice issued on 23

April 2025 & AS-006: 6.3.4.2.D (B) ES Appendix 4.2.D Interim Subtidal Survey Report.

1	5.7.2	<p>Natural England does not have confidence in the assessment of <i>Sabellaria spinulosa</i> reef. It is unclear how the elevation of <i>S. spinulosa</i> aggregations has been calculated, which is a key factor in determining whether aggregations constitute as reef (Gubbay, 2007).</p>	<p>Natural England advises that further evidence is required to evidence the conclusions that no <i>Sabellaria spinulosa</i> reefs were recorded during the subtidal surveys. This includes further information relating to the methodology used to inform reefiness and the collected data used to support the report conclusions.</p> <p>Natural England also requests access to the reef and mussel bed assessment sheets as specified within Appendix O.</p>	<p>The information required to determine and assess the presence of both <i>Sabellaria</i> reefs and mussel beds uses a combination of field observations, a detailed review of the SSS, bathymetry, video footage and stills images. Further analysis was then undertaken to determine the nature of those habitats, requiring reference to multiple data sets. This detailed analysis was undertaken by a highly experienced marine benthic survey contractor with a proven track record of undertaking baseline environmental surveys within UK waters and the following certifications:</p> <p>ISO 9001 for the provision of scientific marine survey and associated consultancy.</p> <p>The NE Atlantic Marine Biological Analytical Quality Control (NMBAQC) quality assurance scheme for macro-invertebrate and particle size analysis.</p>
---	-------	--	--	--

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
	<p>Natural England also disagrees with the approach taken for defining the extent of potential <i>S. spinulosa</i> reef. By assuming a circular geometry of potential reef areas, this introduces a high degree of uncertainty into the assessment of reefiness and is not an approach recommended by Gubbay (2007), Jenkins et al. (2018) or Natural England's best practice advice (Parker et al. 2025a).</p> <p>Natural England is unclear on the methodology deployed to delineate 'patches' of <i>S. spinulosa</i> potential reef from transect data. The extent of patches underpins subsequent area extent calculations and assessment of whether areas comprise of reef or not. However, it is uncertain what criteria have been used to determine discrete patches of <i>S. spinulosa</i> (e.g. continuity, minimum length or allowable gaps).</p> <p>Natural England advises that insufficient evidence has been provided to support the conclusions that surveyed areas do not represent reef, and that the precautionary principle should be applied for areas where the presence of reef remains uncertain.</p>	<p>Natural England advises that surveys to identify the presence and distribution of <i>Sabellaria spinulosa</i> reef across the Offshore Scheme should be secured through the In Principle Monitoring Plan (IPMP) and pre-construction surveys.</p> <p>Natural England advises that commitments to avoid impacts to Section 41 Habitats of Principal Importance, e.g. micro-siting of cable routes, should be secured.</p>	<p>ISO 14001 certified in recognition of our Environmental Management System (EMS).</p> <p>The Applicant has made commitment BE06 in the REAC (Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078]) that where benthic habitats of principal importance are identified during pre-construction surveys and mitigation is required to avoid or reduce impacts on these habitats, an In-Principle Monitoring Plan (IPMP) will be prepared in consultation with the MMO and SNCBs to verify the accuracy of predicted residual impacts on these habitats.</p> <p>The new best practice advice (Parker et al., 2025a) will be used in the assessment of <i>Sabellaria spinulosa</i> reef based on data collected during the pre-construction surveys. Consultation with Natural England will be undertaken to agree the habitat assessment methods.</p>
2	5.7.2	<p>Natural England notes a preference for <i>Sabellaria spinulosa</i> reef assessments to follow the approach as set out by Gubbay (2007) and Jenkins et al. (2018), rather than the split approach set by Collins (2010) used by this survey report. This concurs with Natural England's best practice advice (Parker et al. 2025a).</p>	<p>Please see above comments on determining reefiness.</p> <p>This 2025 Parker guidance was not available at the time of the surveys being undertaken (e.g. 2021-2024) or at the time of analysis or writing.</p> <p>In recognition of such sensitive habitats, the Applicant has made commitment BE06 in the REAC (Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078]) that where benthic habitats of principal importance are identified during pre-construction surveys and mitigation is required to avoid or reduce impacts on these habitats, an In-Principle Monitoring Plan (IPMP) will be prepared in consultation with the MMO and SNCBs to verify the accuracy of predicted residual impacts on these habitats.</p> <p>The new best practice advice (Parker et al., 2025a) will be used in the assessment of <i>Sabellaria spinulosa</i> reef based on data collected during the pre-construction surveys and consultation with Natural England will be undertaken to agree the habitat assessment methods.</p>

Reference	Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
2	5.7.3	Natural England does not have confidence in the assessment of blue mussel beds. Similar to <i>Sabellaria spinulosa</i> reef, Natural England has concerns regarding the extent calculations for potential bed areas. The assumption that potential beds are circular in geometry introduces a high degree of uncertainty into the assessment and therefore is not appropriate for determining which 'Grade 1' areas are considered to be Section 41 blue mussel beds or not.	<p>Natural England advises that further evidence is required to support the conclusions of the Subtidal Survey Report.</p> <p>Natural England also requests access to the reef and mussel bed assessment sheets as specified within Appendix O.</p> <p>Natural England advises that surveys to identify the presence and distribution of blue mussel beds across the Offshore Scheme should be secured through the In Principle Monitoring Plan (IPMP) and pre-construction surveys.</p> <p>Natural England advises that commitments to avoid impacts to Section 41 Habitats of Principal Importance, e.g. micro-siting of cable routes, should be secured.</p>	<p>The information required to determine and assess the presence of both <i>Sabellaria</i> reefs and mussel beds uses a combination of field observations, a detailed review of the SSS, bathymetry, video footage and stills images. Further analysis was then undertaken to determine the nature of those habitats, requiring reference to multiple data sets. This detailed analysis was undertaken by a highly experienced marine benthic survey contractor with a proven track record of undertaking baseline environmental surveys within UK waters and the following certifications:</p> <p>ISO 9001 for the provision of scientific marine survey and associated consultancy.</p> <p>The NE Atlantic Marine Biological Analytical Quality Control (NMBAQC) quality assurance scheme for macro-invertebrate and particle size analysis.</p> <p>ISO 14001 certified in recognition of our Environmental Management System (EMS).</p> <p>The Applicant has made commitment BE06 in the REAC (Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078]) that where benthic habitats of principal importance are identified during pre-construction surveys and mitigation is required to avoid or reduce impacts on these habitats, an In-Principle Monitoring Plan (IPMP) will be prepared in consultation with the MMO and SNCBs to verify the accuracy of predicted residual impacts on these habitats.</p> <p>The new best practice advice (Parker et al., 2025a) will be used in the assessment of <i>Sabellaria spinulosa</i> reef based on data collected during the pre-construction surveys. Consultation with Natural England will be undertaken to agree the habitat assessment methods.</p>
3	5.7.3	It is unclear as to why an approach using semiquantitative SACFOR scale is used to determine the percentage coverage, a quantifiable metric, of blue mussel beds.	<p>Natural England advises that any deviation from best practice is clearly justified.</p>	<p>The 2025 Parker guidance was not available at the time of the surveys being undertaken (e.g. 2021-2024) or at the time of analysis or writing.</p> <p>In recognition of such sensitive habitats, the Applicant has made commitment BE06 in the REAC (Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078]) that where benthic habitats of principal importance are identified during pre-construction surveys and mitigation is required to avoid or reduce impacts on these habitats, an IPMP will be prepared in consultation with the MMO and SNCBs to verify the accuracy of predicted residual impacts on these habitats.</p> <p>The new best practice advice (Parker et al., 2025a) will be used in the assessment of <i>Sabellaria spinulosa</i> reef based on data collected during the pre-construction surveys. Consultation with Natural England will be undertaken to agree the habitat assessment methods.</p>
4	Section 5	Natural England advises that there is insufficient assessment of soft rock habitats, such as 'subtidal chalk' and 'peat and clay exposures' within the survey report.	<p>Natural England advises that clarification required for the occurrence, distribution and extent of subtidal chalk and peat and clay exposures within Subtidal Survey Report (Additional Survey) is required.</p> <p>In addition, Natural England advises that surveys to identify the presence and distribution of Section 41 soft rock habitats across the Offshore Scheme should be secured through the In Principle Monitoring Plan (IPMP) and pre-construction surveys.</p>	<p>As reported in the Additional Survey report (Application Document 9.5 Subtidal Survey Report (Additional Surveys) [AS-035]) habitats were identified according to industry standards, using a combination of field observations, a detailed review of the SSS, bathymetry, video footage and stills images. Based on the ground-truthing data obtained from the additional survey areas a total of four EUNIS habitats were found, none of which were found to be soft rock exposures.</p> <p>The Applicant confirms that during the 2021 surveys (Application Document 6.3.4.2.A ES Appendix 4.2.A Benthic Characterisation Report (Original Report) [APP-196]) two subtypes of 'Communities on soft circalittoral rock' (A4.23) - clay outcrops and soft chalk, were identified as potentially present in the Offshore Scheme on the basis of geophysical data.</p> <p>The data collected indicates the presence of scattered areas of outcropping clays or clay covered by a thin veneer of sand and/or gravel, to the north of the Kent offshore cable route. These were observed in scattered patches the northern and central parts of the</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
<p>Document reviewed: [REP1-068]. 6.4.4.2 (B) ES Figures Marine Benthic Ecology (Tracked)</p>			
1	<p>Figure 3 within document</p> <p>Natural England welcomes the figure: 'Marine Cable Crossings and Areas of Rock Backfill Within the Offshore Scheme Boundary,' within Application Document 6.4.4.2.3.</p> <p>This figure shows areas most likely to require cable protection but does not set out the expected location for remedial works (estimated to be required over 9.84% of the Offshore Scheme). Section 41 Habitats of Principal Importance are also not displayed within this figure (or another figure).</p> <p>Finally, no habitats recorded under the EUNIS habitat code A5.6 Sublittoral biogenic reefs are presented within the figure. The figure 'Subtidal Habitat Complexes and Annex 1 Habitats Identified Within the Offshore Scheme Boundary' presented within Application Document 6.4.4.2.2 shows a large area of A5.6 in the north of the Offshore Scheme which represents a discrepancy.</p>	<p>Partially addressed.</p>	<p>route between KP7.5 and KP95.8, so these potential clay patches may cover a wide area of this region of the North Sea and do not appear to be discrete habitats that can be easily micro-sited around, particularly as the observable extent and distribution of these habitats are subject to change as surrounding mobile sediments shift, covering and exposing various sections of clay.</p>
			<p>The Applicant will be undertaking pre-construction surveys and has made a commitment - BE06 - in the REAC (Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] that where benthic habitats of principal importance are identified during pre-construction surveys and mitigation is required to avoid or reduce impacts on these habitats, an In-Principle Monitoring Plan (IPMP) will be prepared in consultation with the MMO and SNCBs to verify the accuracy of predicted residual impacts on these habitats.</p>

Reference Section/Paragraph	Key concern and/or Update	Natural	England's	Response	Applicant's Comments
					<p>remedial action can be taken should this be necessary (e.g. if Depth of Lowering and natural backfill is not achieved).</p> <p>As has been set out in the DCO Application (multiple documents), the assessment of impacts of cable protection is based on the maximum design scenario approach which assumes that remedial rock protection may be required at any location along the 82 km section of low-risk part of the cable route.</p> <p>Identifying specific locations on a plan as is being requested by Natural England will not change the conclusions from the assessment that has been completed, which concludes that due to the low lying nature of the protection (berm with maximum height of 1 m) and limited spatial extent (one cable trench), and based on regional sediment transport processes that are dominant in the area, there is no potential for any significant effects.</p> <p>The approach that has been taken to the assessment based on application of the MDS is consistent with standard practice and is proportionate for the nature and scale of the development that is proposed.</p> <p>Furthermore, the Applicant has already applied the mitigation hierarchy by taking steps at the project design stage to avoid routing through any sites that are designated for benthic and sediment features, further reducing the potential for any impacts on these sites and associated protected features of these sites.</p>
Document reviewed: [PDA-039] 9.21 Sea Link Cable Burial Risk Assessment					
1	Natural England notes that whilst this is a thorough document which is helpful to inform ecological impact assessments it is written from an engineering perspective and consideration of potential integrity risks to the cables.				<p>Natural England advises that this document is used to inform ecological impact assessments as to where cable installed is likely to be challenging i.e. potentially resulting in sub-optimally buried cables which require external cable protection.</p>
					<p>The Applicant confirms that Application Document 9.21 Sea Link Cable Burial Risk Assessment Cable Burial Risk Assessment (CBRA) [PDA-039] is an engineering document which is why it is written from an engineering perspective. It is not an environmental document. Information from Application Document 9.21 Sea Link Cable Burial Risk Assessment Cable Burial Risk Assessment (CBRA) [PDA-039] has been used to inform the assessment of potential effects relating to cable protection. However, the purpose of the report is to inform final cable design and Application Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4.</p> <p>The information presented in Application Document 9.21 Sea Link Cable Burial Risk Assessment Cable Burial Risk Assessment (CBRA) [PDA-039] has been used to inform the assessment of cable protection in terms of the amount of cable protection that could potentially be required in the low-risk areas (15% along 82 km).</p> <p>As discussed above, the primary objective is to protect the cable through burial. Remedial cable protection is not planned and will only be placed in areas where burial and remediation by lowering techniques is not achieved or there is insufficient natural backfilling of the cable trench, hence why the protection is referred to as remedial. The assessments that have been completed are based on the worst case which assumes remedial rock protection could be placed anywhere along the 82 km low-risk section of the cable route and therefore has considered impacts on all seabed habitats and features along the route. This approach is in accordance with recognised best practice application of the maximum design scenario principle.</p>
5.2	Natural England notes that the Sea Link route crosses both granular and cohesive sediments along with exposures of bedrock (chalk [towards Pegwell Bay landfall] and sub-cropping Red Crag Formation Sandstone				<p>Please see Natural England's advice on the REP2-035 and the requirement for further analysis on where cable protection may be required. We also draw the ExA's attention to our comments on the Applicants MCZ assessment. Therefore, we advise that further assessment of</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
	<p>[towards Aldeburgh landfall]). which will be difficult to cable through and are likely to require cable protection. We advise that cable protection in these areas have the potential to disrupt sediment transport and effect longshore sediment transport.</p>	<p>potential impacts from the placement of cable protection is done to inform the consenting phase.</p>	<p>Further details on the cable protection requirements are outlined in Application Document: 6.2.1.4 Part 1 Introduction Chapter 4 Description of the Proposed Project [REP1A-003]. For clarity, the requirements are summarized as follows:</p> <p>Rock Backfill in High-Risk Areas (KP 38 to KP 58, and KP 81.5 to KP): Locations are shown in documents described above.</p> <p>Natural Backfill Outside High-Risk Areas: This applies to the entire route except for high-risk areas.</p> <p>Cable Protection Structures at Crossings: Includes pre - and post-lay rock placement and/or concrete mattresses. Locations are detailed in Tables 4.18 and 4.19 in Application Document 6.2.1.4 (D) Part 1 Introduction Chapter 4 Description of the Proposed Project [REP1A-003] and shown in Application Document 2.14.3 Indicative General Arrangements Plans – Offshore [CR1-026].</p> <p>Remedial Rock within the Trench or Low Height Berm: Used where the natural backfill rate is too slow, the target depth of lowering is not achieved, or through cable exposure during operation. This applies to the entire route except for high-risk areas. Precise locations are unknown but expected to be minimal.</p> <p>The Applicant can confirm that cable lowering below seabed is the primary method of cable protection. It is in the Applicant's interest to ensure the cable is appropriately protected. Application Document 9.21 Sea Link Cable Burial Risk Assessment Cable Burial Risk Assessment (CBRA) [PDA-039] assesses the risks to the cable and informs the cable protection strategy. Application Document 9.92 Cable Specification and Installation Plan (CSIP) submitted at Deadline 4 will set out how the works will be carried secured within the Deemed Marine Licence.</p> <p>Remedial rock protection is contingency, to be used when all other options to bury the cable are exhausted. The remedial rock protection identified within the Proposed maximum design scenario (MDS) is conservative and based on worst case assumptions that it could be required anywhere along the route (15% of non-high-risk length (excluding trenchless solutions at landfall)), and our environmental assessment has considered worst case assumption within its relevant chapters.</p> <p>As has been set out in Application Document 6.2.4.1 (D) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4, the assessment is based on the MDS approach where impacts of cable protection on sediment transport processes and longshore drift have been assessed, assuming that remedial rock protection may be required at any location along the 82 km section of low-risk part of the cable route.</p> <p>Identifying specific locations as is being requested by Natural England will not change the conclusions from the assessment that has been completed, which concludes that due to the low lying nature of the protection (berm with maximum height of 1 m) and limited spatial extent (one cable trench), and based on regional sediment transport processes that are dominant in the area, there is no potential for any significant effects.</p> <p>The approach that has been taken to the assessment based on application of the MDS is consistent with standard practice and is proportionate for the nature and scale of the development that is proposed.</p> <p>Furthermore, the Applicant has already taken steps at the project design stage to avoid routing through any sites that are designated for benthic and sediment features, further reducing the potential for any impacts on these sites and associated protected features of these sites.</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
6.4.2	<p>Natural England notes the Applicant states that '<i>In the route between ~KP 0.600 and KP 2.700, there is uncertainty whether stiff clay may in fact be subcropping Red Crag Formation Sandstone (nearshore geotechnical sampling is recommended to improve confidence) presence of Coralline Crag at the Suffolk landfall</i>', but there is no discussion on the implications of any technical difficulties of the HDD exit points at this location on benthic receptors and coastal processes.</p>	<p>Natural England advises that further consideration of the locations requiring cable protection is required to inform potential impacts to sediment transport and benthic receptors.</p>	<p>The Applicant can confirm that a map presenting the areas of planned rock protection offshore for the Proposed Project is presented within Application Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4, and also Application Document 6.4.4.2 (B) Environmental Statement Figures Marine Benthic Ecology [REP1-067] previously submitted.</p> <p>Further details on the cable protection requirements are outlined in Application Document 6.2.1.4 Part 1 Introduction Chapter 4 Description of the Proposed Project [REP1A-003]. For clarity, the requirements are summarized as follows:</p> <p>Rock Backfill in High-Risk Areas (KP 38 to KP 58, and KP 81.5 to KP): Locations are shown in documents described above.</p> <p>Natural Backfill Outside High-Risk Areas: This applies to the entire route except for high-risk areas (no rock required).</p> <p>Cable Protection Structures at Crossings: Includes pre - and post-lay rock placement and/or concrete mattresses. Locations are detailed in Tables 4.18 and 4.19 in Application Document 6.2.1.4 (D) Part 1 Introduction Chapter 4 Description of the Proposed Project [REP1A-003] and shown in Application Document 2.14.3 Indicative General Arrangements Plans – Offshore [CR1-026].</p> <p>Remedial Rock within the Trench or Low Height Berm: Used where the natural backfill rate is too slow, the target depth of lowering is not achieved, or through cable exposure during operation. This applies to the entire route except for high-risk areas. Precise locations are unknown but expected to be minimal.</p> <p>The Applicant can confirm that cable lowering below seabed is the primary method of cable protection. It is in the Applicant's interest to ensure the cable is appropriately protected. The Applicant's Application Document 9.21 Sea Link Cable Burial Risk Assessment Cable Burial Risk Assessment (CBRA) [PDA-039] assesses the risks to the cable and informs the cable protection strategy, and the Application Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4 will set out how the works will be carried out ensuring compliance with the requirements of the DCO.</p> <p>Remedial rock protection is contingency, to be used when all other options to bury the cable are exhausted. The remedial rock protection identified within the Proposed maximum design scenario (MDS) is conservative and based on worst case assumptions that it could be required anywhere along the route (15% of non-high-risk length (excluding trenchless solutions at landfall)), and our environmental assessment has considered worst case assumption within its relevant chapters.</p> <p>As has been set out in Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4, the assessment is based on the MDS approach where impacts of cable protection on sediment transport processes and longshore drift have been assessed, assuming that remedial rock protection may be required at any location along the 82 km section of low-risk part of the cable route.</p> <p>Identifying specific locations as is being requested by Natural England will not change the conclusions from the assessment that has been completed, which concludes that due to the low lying nature of the protection (berm with maximum height of 1 m) and limited spatial extent (one cable trench), and based on regional sediment transport processes that are dominant in the area, there is no potential for any significant effects.</p> <p>The approach that has been taken to the assessment based on application of the MDS is consistent with standard practice and is proportionate for the nature and scale of the development that is proposed.</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
Extracted from figures in CBRA	<p>Natural England notes that there are potential cable burial issues due to bedrock (chalk) which are not clearly presented or discussed in the CBRA, particularly around KP 96 -KP 117. We highlight that this area is close to Goodwin Sands and to the southwest towards the approaches of Pegwell Bay. We therefore highlight that if there is insufficient burial depth here and a need for cable protection then it may affect the sediment transport pathways/processes around here and the benthic receptors of the designated sites.</p> <p>We also highlight that in [CR1 – 009] that areas of potential chalk also align with the widest cable corridor.</p>	<p>Natural England advises that impacts to Goodwin Sands MCZ and coastal designated sites from indirect impacts from the placement of cable protection and potential disruption of marine/coastal processes requires further consideration.</p>	<p>Furthermore, the Applicant has already taken steps at the project design stage to avoid routing through any sites that are designated for benthic and sediment features, further reducing the potential for any impacts on these sites and associated protected features of these sites.</p>

Some patches of chalk were observed in vibrocoring samples in this area but was found to be generally sub-surface, as detailed in **Application Document 6.3.4.2.A ES Appendix 4.2.A Benthic Characterisation Report (Original Report) [APP-196]**. In the LOD for the Proposed Project therefore, the chalk can be considered a primarily geological

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments	
Document reviewed: [REP1-022] 6.11 (B) Marine Conservation Zone Assessment (Tracked)				
1	1.5.24	<p>Natural England notes that it is the Applicant's view that cable protection will be sufficiently low to not disrupt natural processes, but we highlight there is no supporting evidence to demonstrate that this will be the case. Therefore, we are unable to agree with the Applicant's position.</p>	<p>Natural England advises that evidence should be provided to demonstrate that the Applicant's chosen cable protection will not disrupt marine processes and impact up the MCZs and there is a commitment to only allow cable protection to be placed where this can be demonstrated. Equally there should be a commitment to only install cable protection which is readily removable and will be removed at these locations. We also advise that monitoring of residual concerns is included within the outline IPMP and with a commitment to undertake remedial actions if monitoring identifies the need to.</p>	<p>The Applicant re-iterates that the Proposed Project does not intersect the Goodwin Sands MCZ.</p> <p>A detailed assessment on the impacts of rock on the physical environment is presented in Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4.</p> <p>External rock protection needs to provide a strong protective cover to protect the cables from external threats, such as potential interactions with other marine activities including anchoring and fishing, whilst ensuring the stability of the cables, by shielding the cable from the currents. When considering external cable protection, the safety of other sea users must also factor into the design and materials used, for instance, reducing the likelihood of snagging from fishing gear.</p> <p>The Applicant can confirm that the types of rock protection used for the Proposed Project are presented in further detail within Application Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4.</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
			<p>The post-installation monitoring currently outlined within Application Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4 is for engineering and design purposes, focusing on identifying and reducing the potential for any damage to the installed cable by ensuring depth of lowering has been achieved and is maintained. This is a different requirement to environmental monitoring.</p> <p>The Applicant is therefore not intending to prepare an outline IPMP for benthic ecology at this stage (subject to pre-installation surveys as noted in AP31) as there are no defined requirements for benthic monitoring upon which an outline IPMP would be based.</p> <p>This approach follows the Institute of Environmental Management and Assessment (IEMA) Impact Assessment Guidelines (2024) which states the following with regards to the need for monitoring:</p> <p><i>'there are specific requirements to consider the need for monitoring that arise as part of the EIA regulatory process – for example, considering whether to establish monitoring measures related to significant adverse effects identified in the Environmental Statement or the monitoring of mitigation designed to avoid, prevent or reduce those effects'.</i></p> <p>In light of the above responses, the Applicant confirms that the Application Document 7.5.2 Outline Offshore Construction Environmental Management Plan [APP-339] will be updated to include the approach outlined above and submitted at a suitable Deadline.</p> <p>The Applicant confirms that is currently reviewing the Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] and associated Requirement 6 in light of the points raised at the ISH2, and we propose to ameliorate that drafting such that the provisions raised at the hearing are appropriately secured. The updated REAC will be submitted at Deadline 4A.</p>
1.5.25	Natural England advises that we remain concerned in relation to impacts to the Thanet Coast MCZ that infrastructure will remain buried.	Natural England advises that a further review of potential impacts to the Thanet Coast MCZ is required over the lifetime of the project.	<p>The Offshore Scheme completely avoids the Thanet Coast MCZ and there will therefore be no infrastructure placed within this designated site. This MCZ is 1.2 km from the Offshore Scheme, and based on potential zones of influence only two impact pathways have been screened into the assessment: a temporary increase in SSC and decommissioning.</p> <p>For decommissioning, the principal options for decommissioning are either (i) full removal of the cable or (ii) leave the cable buried <i>in-situ</i>. In the event of the full removal of the cable, this has been assessed to have the potential for similar impacts to the Construction Phase of the Proposed Project. Should the cable be left <i>in-situ</i>, there would likely be no impact pathways to marine receptors.</p> <p>To enable the Applicant to address this concern further please can Natural England elaborate on the specific concerns in relation to a buried cable left <i>in-situ</i>.</p>
1.5.26, 1.5.30	Natural England advises that significance of impacts to MCZ features should be based on the conservation objectives of the site and not an EIA. Therefore, we do not agree with the conclusion of "minor not significant".	Natural England advises that impacts to the MCZ should be assessed against the conservation objectives for the site.	<p>The MCZ has referred to the conservation objectives of all MCZs (to either recover to or maintain a favourable condition) for all impact pathways and all sites.</p> <p>However, where the MCZ report - Application Document 6.11 (B) Marine Conservation Zone Assessment [REP1-021]- had been updated and submitted to include the following impact pathways: (i) "Interruption to sediment transport processes" and (ii) "Cable protection measures and associated impact on the Goodwin Sands MCZ" the incorrect terminology had been used in error.</p> <p>Application Document 6.11 (C) Marine Conservation Zone Assessment has been updated to amend this for submission at Deadline 4.</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
1.5.27	Natural England notes the impacts to Goodwin Sands MCZ from the placement of cable protection is only considered at cable crossing points and does not take into account the findings of the CBRA [PDA-039]	Natural England advises that further consideration of the potential impacts to Goodwin Sand MCZ from the placement of cable protection is required.	<p>Please refer the response to item 6.4.2 above.</p> <p>The Offshore Scheme has been rerouted to avoid Goodwin Sands MCZ. As a result, the Offshore Scheme now runs adjacent to the Goodwin Sands MCZ boundary but does not overlap any area of the site. Therefore, cable protection will not be placed anywhere within MCZ boundary, as stated in Application Document 6.11 (C) Marine Conservation Zone Assessment submitted at Deadline 4. Any impacts resulting from the use of cable protection are highly localised and therefore Goodwin Sands MCZ was not considered further for the direct placement impact pathway. Indirect impacts from sediment disturbance and deposition were considered.</p> <p>The Applicant confirms that for any area in close proximity to Goodwin Sands the preferred installation technique is always to bury the cable. Cable lowering below seabed is the primary method of cable protection. It is in the Applicant's interest to ensure the cable is appropriately protected. The Applicant's Application Document 9.21 Sea Link Cable Burial Risk Assessment [PDA-039] assesses the risks to the cable and informs the cable protection strategy and the Application Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4 will set out how the works will be carried out ensuring compliance with the requirements of the DCO.</p> <p>Remedial rock protection is contingency, to be used when all other options to bury the cable are exhausted and has been assessed as part of the MDS for the project.</p> <p>The Applicant has submitted Application Document 9.92 Outline Cable Specification and Installation Plan submitted Deadline 4. This document provides further information on the design of the marine cable and methods that will be used to install the cable. This also includes information on requirements for cable protection.</p>
1.5.27	Natural England is unclear what cable protection is likely to be used where. Most assessments are based on WCS of rock protection, but it is stated for cable crossings adjacent to Goodwin Sands MCZ concrete mattresses are proposed which is surprising given the other seabed user risks.	Natural England requests further information and justified rationale on the placement of cable protection and the location.	<p>Please refer to the response to item 6.4.2 above regarding the approach to cable protection and the assessment of the MDS.</p> <p>External rock protection needs to provide a strong protective cover to protect the cables from external threats, such as potential interactions with other marine activities including anchoring and fishing, whilst ensuring the stability of the cables, by shielding the cable from the currents. When considering external cable protection, the safety of other sea users must also factor into the design and materials used, for instance, reducing the likelihood of snagging from fishing gear.</p> <p>The Applicant can confirm that the types of rock protection used for the Proposed Project are presented in further detail within Application Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4.</p>
1.5.29	Natural England notes that the Applicant note potential for scour where cable protection is placed, but this is not defined. Therefore, we are unable to advise on the significance of this.	Natural England advises that further impact assessment of scour and secondary scour is required.	<p>The Applicant can confirm that cable lowering below seabed is the primary method of cable protection. It is in the Applicant's interest to ensure the cable is appropriately protected. The Applicant's Application Document 9.21 Sea Link Cable Burial Risk Assessment [PDA-039] assesses the risks to the cable and informs the cable protection strategy and Application Document 9.92 Outline Cable Specification and Installation Plan submitted at Deadline 4 will set out how the works will be carried out ensuring compliance with the requirements of the DCO.</p> <p>Remedial rock protection is contingency, to be used when all other options to bury the cable are exhausted. The remedial rock protection identified within the Proposed maximum design scenario (MDS) is conservative and based on worst case assumptions that it could be required anywhere along the route (15% of non-high-risk length</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
			<p>(excluding trenchless solutions at landfall)), and our environmental assessment has considered worst case assumption within its relevant chapters.</p> <p>As has been set out in Application Document 6.2.4.1 (D) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4, the assessment is based on the MDS approach where impacts of cable protection on sediment transport processes and longshore drift have been assessed, assuming that remedial rock protection may be required at any location along the 82 km section of low-risk part of the cable route.</p> <p>Identifying specific locations as is being requested by Natural England will not change the conclusions from the assessment that has been completed, which concludes that due to the low lying nature of the protection (berm with maximum height of 1 m) and limited spatial extent (one cable trench), and based on regional sediment transport processes that are dominant in the area, there is no potential for any significant effects.</p> <p>The approach that has been taken to the assessment based on application of the MDS is consistent with standard practice and is proportionate for the nature and scale of the development that is proposed.</p> <p>Furthermore, the Applicant has already taken steps at the project design stage to avoid routing through any sites that are designated for benthic and sediment features, further reducing the potential for any impacts on these sites and associated protected features of these sites.</p>
1.6.6	<p>Natural England notes that the indirect impacts focus on Suspended Sediment Concentrations and do not include changes to marine/coastal processes.</p>	<p>Natural England advises that further consideration of potential impact pathways is considered</p>	<p>The Applicant added two additional impact pathways: (i) "Interruption to sediment transport processes" and (ii) "Cable protection measures and associated impact on the Goodwin Sands MCZ" were added to Application Document 6.11 (B) Marine Conservation Zone Assessment [REP1-021]. To further clarify these impact pathways were screened out of the assessment Application Document 6.11 (C) Marine Conservation Zone Assessment has been updated for submission at Deadline 4.</p>
1.6.8	<p>Natural England highlights that all comments for Goodwin Sands are also relevant to Kentish Knock East MCZ, (and Thanet Coast MCZ), but to a lesser extent given the greater distance between the impacts.</p>	<p>Natural England advises further comments for Goodwin Sands are considered.</p>	<p>Kentish Knock East MCZ and Thanet Coast MCZ have been considered in detail in Application Document 6.11 (C) Marine Conservation Zone Assessment submitted at Deadline 4. Kentish Knock East MCZ and Thanet Coast MCZ are located a suitable distance from the cable (1 km and 1.2 km respectively) such that direct impacts will not occur. The Offshore Scheme does not overlap with Kentish Knock East MCZ, Thanet Coast MCZ or Goodwin Sands MCZ, therefore cable protection will not be placed within any of these sites. These sites have been considered in relation to the indirect effects of sediment disturbance from project activities and were found to be unlikely to affect the conservation objectives of these sites. The assessment for Thanet Coast MCZ was updated in relation to sea caves, as submitted previously in Application Document 6.11 (B) Marine Conservation Zone Assessment [REP1-021].</p>
<p>Document reviewed: [REP1-103] 7.5.3.2 (B) CEMP Appendix B Register of Environmental Actions and Commitments (REAC) (Tracked Changes).</p>			
1	<p>Natural England notes that there is no mitigation commitment for sand wave levelling included within in the document.</p>	<p>Natural England advises that standard best practice mitigation measures should be adopted where impacts from sandwave levelling could impact within MCZs and/or on NERC Habitat features.</p>	<p>The Applicant can confirm that the locations where it has been identified that there could be a requirement for pre-sweeping (sandwave clearance) remains as presented in Table 4.13 of Application Document 6.2.1.4 (E) Part 1 Introduction Chapter 4 Description of the Proposed Project submitted at Deadline 4 and this has been used to inform the assessment of impacts presented in Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology submitted at Deadline 4.</p> <p>There will be no sandwave levelling in any designated or protected site that is designated for benthic habitats, including none within Goodwin Sands MCZ. There is potential for pre-sweeping to occur along the 3.2 km section of the cable route that runs adjacent to the Goodwin Sands MCZ, potential effects to protected features and habitats</p>

Reference Section/Paragraph	Key concern and/or Update	Natural	England's	Response	Applicant's Comments
					<p>located within the MCZ are limited. All material from pre-sweeping will be deposited within the cable corridor (Order Limits) and over time will redistribute within the marine environment via sediment transport processes.</p> <p>As discussed in Application Document 6.2.4.1 (E) Part 4 Marine Chapter 1 Physical Environment submitted at Deadline 4 there is potential that pre-sweeping as part of route preparation will lead to the temporary disturbance of seabed sediment and a localised, short-term increase in suspended sediment concentrations (SSC). Coarse sands and gravels are expected to be redeposited within a few metres from the point of sediment release. There is potential for finer fractions (including finer sands, silts and clays) to be transported further on prevailing tides and currents, causing SSC to decrease as particles are dispersed through the water column with water column turbidity returning to baseline conditions within a few km. It is acknowledged that some of these finer fractions could be dispersed into the Goodwin Sands MCZ. However, where redeposition of these finer fractions occurs, due to the limited volumes of sediment released in the first place and the extent of dispersion of the particles as they transported from the point of release, the resulting accumulations will be less than 0.5 mm which is unlikely to be detectable on the field.</p> <p>As detailed in Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology submitted at Deadline 4 and noted in responses above, the Goodwin Sands MCZ Features map shows that <i>Sabellaria</i> reefs are concentrated in the southern region of the MCZ, approximately 6.6 km from the cable corridor and the blue mussel beds are located approximately 15 km from the cable corridor. The habitats in the area of Goodwin Sands MCZ are mapped as subtidal coarse sediments and it can therefore be concluded that there is limited potential pre-sweeping/sand wave clearance to have any adverse effects on the designated features within the Goodwin Sands MCZ.</p>
B59	Suffolk Coast HDD				<p>Natural England advises that this commitment is amended so that the final HDD management plan is agreed with the regulators in consultation with the relevant SNCB, rather than it be for our information only.</p> <p>The Applicant confirms that commitment B59 of the REAC [Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078]] states:</p> <p>In relation to trenchless landfall works at both Suffolk and Kent, the contractor(s) will:</p> <ul style="list-style-type: none"> • Prepare a HDD landfall Method Statement and Drilling Fluid Management Plan in consultation with Natural England (NE), Kent Wildlife Trust (KWT) and Royal Society for the Protection of Birds (RSPB) as appropriate. <p>This Drilling Fluid Management Plan is also secured within the CSIP: Application Document 9.92: Outline Cable Specification and Installation Plan submitted at Deadline 4.</p> <p>The Applicant confirms that it is currently reviewing the REAC and associated Requirement 6 in light of the points raised at the ISH2 and proposes to ameliorate that drafting such that the provisions raised at the hearing are appropriately secured. The updated Application Document 9.84 Register of Environmental Actions and Commitments (REAC) will be updated submitted at Deadline 4A.</p>
BE05	Mitigation plan for NERC Habitats				<p>Natural England advises that not only should there be a commitment to agree a mitigation plan for NERC habitats in consultation with relevant SNCB prior to construction, but that unless agreed otherwise</p> <p>The Applicant confirms the pre-construction surveys will be undertaken and has committed to the following actions within Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078]:</p> <p>BE05 of the REAC: Where benthic habitats of principal importance (qualifying as annex 1 or NERC) are identified during pre-construction surveys (engineering surveys and UXO) and there is potential for an impact on these habitats, National Grid will prepare a Benthic Mitigation Plan, in consultation with the MMO and SNCBs.</p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
		impacts to these habitats are avoided.	<p>BE06 of the REAC: Where benthic habitats of principal importance are identified (qualifying as annex 1 or NERC) during pre-construction surveys and mitigation is required to avoid or reduce impacts on these habitats, an In-Principle Monitoring Plan (IPMP) will be prepared in consultation with the MMO and SNCBs to verify the accuracy of predicted residual impacts on these habitats.</p> <p>The Applicant confirms that it is currently reviewing the REAC and associated Requirement 6 in light of the points raised at the ISH2 and proposes to ameliorate that drafting such that the provisions raised at the hearing are appropriately secured. The updated Application Document 9.84 Register of Environmental Actions and Commitments (REAC) will be updated and submitted at Deadline 4A.</p>
BE06	Monitoring Plan	Natural England advises that all monitoring requirements/hypotheses are included in an Offshore IPMP at the time of consent.	<p>In line with good practice, monitoring must have a clear purpose in order to provide answers to specific questions where significant environmental impacts have been identified.</p> <p>Monitoring should be targeted towards significant evidence gaps or uncertainties, which are relevant to the project and can be realistically delivered by project level monitoring, as well as those receptors considered to be the most sensitive to project specific impacts including those of conservation, ecological and/or economic importance. The presence of a significant impact should not, on its own, necessarily lead to a requirement for monitoring.</p> <p>The Applicant can confirm that all impacts on benthic ecology in the Environmental Statement were assessed as minor and not significant without the need for additional mitigation. Also, no significant data gaps or areas of uncertainty were identified for the Proposed Project with regards to baseline data.</p> <p>As such, given that no likely significant effects have been identified for benthic ecology, and there are no requirements for additional mitigation or any areas of uncertainty / data gaps, no specific offshore receptors have been identified at this stage that would require further monitoring. The Applicant therefore considers that an outline IPMP is not required for benthic ecology.</p> <p>The post-installation monitoring currently outlined within the Outline Cable Specification and Installation Plan (Application Document 9.92 Outline Cable Specification and Installation Plan) submitted at Deadline 4 is for engineering and design purposes, focusing on identifying and reducing the potential for any damage to the installed cable by ensuring depth of lowering has been achieved and is maintained. This is a different requirement to environmental monitoring.</p> <p>The Applicant is therefore not intending to prepare an outline IPMP for benthic ecology at this stage (subject to pre-installation surveys as noted in AP31) as there are no defined requirements for benthic monitoring upon which an outline IPMP would be based.</p> <p>This approach follows the Institute of Environmental Management and Assessment (IEMA) Impact Assessment Guidelines (2024) which states the following with regards to the need for monitoring:</p> <p><i>'there are specific requirements to consider the need for monitoring that arise as part of the EIA regulatory process – for example, considering whether to establish monitoring measures related to significant adverse effects identified in the Environmental Statement or the monitoring of mitigation designed to avoid, prevent or reduce those effects'.</i></p>

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments
			<p>However, the Applicant confirms the pre-construction surveys will be undertaken and has committed to the following actions within Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078]:</p> <p>BE05 of the REAC: Where benthic habitats of principal importance (qualifying as annex 1 or NERC) are identified during pre-construction surveys (engineering surveys and UXO) and there is potential for an impact on these habitats, National Grid will prepare a Benthic Mitigation Plan, in consultation with the MMO and SNCBs.</p> <p>BE06 of the REAC: Where benthic habitats of principal importance are identified (qualifying as annex 1 or NERC) during pre-construction surveys and mitigation is required to avoid or reduce impacts on these habitats, an In-Principle Monitoring Plan (IPMP) will be prepared in consultation with the MMO and SNCBs to verify the accuracy of predicted residual impacts on these habitats.</p> <p>The Applicant confirms that the Offshore Construction Environmental Management Plan will be updated to include the approach outlined above and submitted at Deadline 5 which will be secured within the Deemed Marine Licence.</p> <p>The Applicant confirms that it is currently reviewing the REAC and associated Requirement 6 in light of the points raised at the ISH2, and we propose to ameliorate that drafting such that the provisions raised at the hearing are appropriately secured. The Application Document 9.84 Register of Environmental Actions and Commitments (REAC) will be submitted at Deadline 4A.</p>

Document reviewed: [REP2 - 035] 9.80 Integrated Geophysical and Geotechnical Survey Report - Extract

1	Natural England welcomes the submission of REP2-035 Geophysical and Geotechnical Report. It is helpful in understanding the geology of the soils under the seabed. We note that blocks 1 and 2 have a lot of exposed clay and stiff clay with support the CBRA [PDA – 039]. However, it is not clear how they relate to benthic NERC habitats. Nor does it provide the further consideration of where cable protection is most likely to be required.	Natural England advises that further interpretation of the findings included within this report is required to demonstrate where cable protection is mostly likely to be required and once this is known undertake an assessment of the potential direct/indirect impacts from cable protection on designated sites features, irreplaceable geological features, and NERC habitats.	<p>It is acknowledged by the Applicant that both Block 1 (nearshore and offshore) and Block 2 show areas of clay within the Offshore Scheme Boundary as previously reported. These areas have been considered in Application Document 6.2.4.2 (D) Part 4 Marine Chapter 2 Benthic Ecology submitted at Deadline 4 in detail. Where it is considered that the clay forms a NERC habitat within the Offshore Scheme Boundary, this has been specified in the text in 'Protected Habitats and Species of Conservation Importance' section of the chapter (as included in Table 2.14 of the chapter).</p> <p>The determination of NERC habitats is based on a combination of geophysical data – to help identify habitat sensitivities that should be sampled (either by DDV transect or by extra grab sampling) – and the DDV and grab sample data. The subtidal survey reports combine these datasets to inform habitat identification and habitat mapping. The geophysical data is multipurpose so will generate separate findings for geology (to aid design etc) and data to feed into sampling and habitat mapping.</p> <p>The information presented in Application Document 9.21 Sea Link Cable Burial Risk Assessment Cable Burial Risk Assessment (CBRA) [PDA-039] has been used to inform the assessment of cable protection in terms of the amount of cable protection that could potentially be required in the low-risk areas (15% along 82 km).</p> <p>As discussed above, the primary objective is to protect the cable through burial. Remedial cable protection is not planned and will only be placed in areas where burial and remediation by lowering techniques is not achieved or there is insufficient natural backfilling of the cable trench, hence why the protection is referred to as remedial.</p> <p>The assessments that have been completed are based on the worst case which assumes remedial rock protection could be placed anywhere along the 82 km low-risk section of the cable route and therefore has considered impacts on all seabed habitats and features along the route. This approach is in accordance with recognised best practice application of the maximum design scenario principle.</p>
---	---	---	--

Reference Section/Paragraph	Key concern and/or Update	Natural England's Response	Applicant's Comments

4. Applicant's Comments on the Submission from Sir Roger Gale MP

4.1 Introduction

4.1.1 Table 4.1 summarises the Applicant's comments on Sir Roger Gale MP Deadline 3 Response [REP3-128].

Table 4.1 Applicant's Comments on the Sir Roger Gale MP Deadline 3 Submission [REP3-128]

Reference	Matter	Point Raised	Applicant's Comments
2.1.1 Comments on Any Other Submissions Received at Deadline 3			
N/A	N/A	<i>I note that my constituent [REDACTED] [...] has submitted a detailed response to this application and rather than duplicate effort I am prepared to simply endorse her submission in its entirety.</i>	Please refer to 9.36 Applicant's Comments on Other Submissions Received at Deadline 2 [REP3-064] for a response to the submission made by Save Minster Marshes [REP2-103], a copy of which was attached to the letter submitted by Sir Roger Gale MP.

5. Applicant's Comments on the Submission from TJ Haworth-Culf

5.1 Introduction

5.1.1 Table 5.1 summarises the Applicant's comments on T-J Haworth-Culf Deadline 3 Response [REP3-127].

Table 5.1 Applicant's Comments on the Stakeholder TJ Haworth-Culf Deadline 3 Submission [REP3-127]

Reference	Matter	Point Raised	Applicant's Comments
2.1.1 Comments on Any Other Submissions Received at Deadline 3			
2-3	Engagement with Aldeburgh	<p>I am deeply concerned that the Applicant has failed to engage meaningfully with Aldeburgh as a community. Despite detailed representations from the Town Council, local businesses, residents and elected representatives, the Applicant has largely repeated its original assertions and has not substantively responded to the specific issues raised for this town.</p> <p>This matters. Aldeburgh is not an abstract location on a map: it is a living community whose economy, health and identity are closely bound to tourism, accessibility and environmental quality. I share the view of Aldeburgh Town Council that even if the scheme were to be approved—which I do not support—there is little confidence that mitigation or compensation would be delivered in good faith, given the Applicant's persistent unwillingness to engage.</p>	<p>The Applicant has engaged extensively with both residents and elected representatives of Aldeburgh, including Aldeburgh Town Council. As set out in Application Document 5.1 Consultation Report [APP-301] residents and representatives were directly invited to respond to the non-statutory, statutory, and targeted consultations undertaken in 2022, 2023 and 2024 respectively. Three public exhibitions were held in Aldeburgh across the non-statutory and statutory consultations (which were attended by approximately 2,000 people), in addition to separate meetings with Aldeburgh Town Council during the statutory and targeted consultations.</p> <p>Whilst it was not the Applicant's policy to provide individual responses to consultation feedback, it has set out the topics/codes raised by Aldeburgh Town Council in Table 8.3 and Table 9.8 of Application Document 5.1 Consultation Report [APP-301], whilst Table 8.4 and Table 9.10 of this report sets out the Applicant's response to these topics (along with all other issues raised by those who submitted consultation feedback).</p>
4	N/A	I refer to (15) and also my 'apples and pears' below regarding how different everything is now and how you cannot compare sizewell B to what is happening with C.	The Applicant responds to the matters raised here in more detail, below.
4 and 5	Tourism	<p>I support the positions set out in the Local Impact Reports of Suffolk County Council and East Suffolk Council, but it is vital to stress the particular vulnerability of Aldeburgh. The town is the primary tourism centre in this part of the coast and a major contributor to the local economy. Any assessment of tourism impacts that fails to properly account for Aldeburgh is fundamentally flawed.</p> <p>Aldeburgh is a nationally and internationally recognised destination. The Applicant's tourism assessment, however, treats the town as if it barely exists, referring only to small peripheral areas and ignoring the reality of where visitors go, stay and spend. This omission is not a technical oversight; it undermines the entire credibility of the assessment.</p>	<p>The Applicant recognises that the potential for future environmental changes associated with the Proposed Project during construction, operation and decommissioning are a source of concern for local tourism.</p> <p>The Applicant has undertaken a comprehensive and robust Environmental Impact Assessment (EIA), through which no residual significant effects have been identified from a socio-economic, recreation and tourism perspective following the application of appropriate mitigation. Section 10.6 of (B) Part 2 Suffolk Chapter 10 Socio-economics, Recreation and Tourism [REP1A-005] of the Environmental Statement (ES) defines the existing site and surroundings of the Proposed Project, identifying sensitive receptors for assessment, including a number of recreational routes and Public Rights of Way (PRoW), local businesses and visitor</p>

Reference	Matter	Point Raised	Applicant's Comments
			<p>attractions in Aldeburgh. Section 10.9 assesses the potential effects of the Proposed Project on these private and community, recreation and tourism receptors. The assessment identified no significant effects on these receptors.</p> <p>Impacts on amenity for these receptors are assessed in Application Document 6.2.2.11 Part 2 Suffolk Chapter 11 Health and Wellbeing [APP-058]. In light of the topic-specific conclusions identified and mitigation in place, no significant adverse effects on human health and wellbeing are identified. This includes no significant effects arising from construction in relation to community severance, air quality, landscape and visual or noise that would materially affect health and wellbeing outcomes.</p> <p>The Applicant, however, is setting up meetings with the local planning authorities to discuss the potential for monitoring impacts on visitors and tourism following the grant of development consent (if granted). The Applicant is also reviewing potential opportunities to liaise with tourism related businesses to seek their views on how tourism impacts can be minimised.</p> <p>The Applicant notes there are concerns regarding the potential for adverse impacts on visitor and tourism accommodation. Application Document 6.2.2.10 (B) Part 2 Suffolk Chapter 10 Socio-economics, Recreation and Tourism [REP1A-005] concludes that there are no significant effects anticipated on local accommodation capacity arising from the Suffolk Onshore Scheme, Application Document 6.2.2.13 Part 2 Suffolk Chapter 13 Interproject Cumulative Effects [APP-060] also assesses the cumulative impact of the Proposed Project alongside other NSIPs, on local accommodation capacity. Under a worst-case scenario whereby the peak construction workforces of the cumulative schemes overlap, and all workers require accommodation, the chapter concludes that no significant effects are expected. As a result, no additional mitigation will be required.</p> <p>The Applicant is working closely with Sizewell C and SPR to explore ways that the impacts of construction workers traveling to site and staying in the local area could be minimised. The Applicant has had several meetings with Sizewell C, discussing the shared use of the Park and Ride Facilities being built by Sizewell C, the buses that they are providing for workers from Ipswich Train Station and any future initiatives they are planning. The types of construction workers used for the Proposed Project are more likely to stay in hotels within cities and large towns where they have access to other facilities based on experience from other National Grid projects.</p>
6		<p>The Applicant's approach in Chapter 10 is deeply problematic for three reasons:</p> <p>First, no realistic "sanity check" appears to have been applied. Any serious appraisal of tourism impacts in this area would begin with Aldeburgh as the principal tourism hub. A methodology that does not capture this cannot produce reliable results.</p>	<p>The Applicant notes there is currently no statutory guidance on the methodology for undertaking assessments of socio-economic, recreation and tourism effects. The assessment uses professional judgements and best practice methodology from other assessments undertaken on comparable energy infrastructure schemes. Some of these schemes are referenced in Application Document 9.40 Visitor and Tourism Assessment Technical Note – Suffolk [REP3-065]. Where relevant, the Applicant has drawn on guidance, including the <i>Design Manual for Roads and Bridges (DMRB) LA 112: Population and</i></p>

Reference	Matter	Point Raised	Applicant's Comments
		<p>Second, the Applicant relies on highway-based guidance (LA 112) that was never designed to assess tourism impacts in coastal resort towns. Even the Applicant concedes that there is no statutory guidance for this type of assessment yet proceeds as if there were.</p> <p>Third, the Applicant relies on unnamed “professional judgement”. Given the two points above, that judgement is not credible.</p>	<p>human health (National Highways, 2020). While it is noted that LA 112 has been developed for highway projects, it is considered relevant guidance given the Proposed Project is also a linear development. The assessment has also been informed by the <i>Department for Levelling Up, Housing and Communities (DLUHC) Appraisal Guide (2023)</i> and <i>Home and Communities Agency (HCA) Additionality Guide, Fourth Edition (2014)</i> which provide guidance for assessing and informing assumptions relating to economic impacts. The additionality assumptions have been estimated using a combination of professional judgement and assumptions applied in other comparable Nationally Significant Infrastructure Projects (NSIPs). As a result, the Applicant is confident that the approach and methodology applied for impacts on socio-economics, recreation and tourism has provided a robust assessment of the potential for significant effects arising from the Suffolk Onshore Scheme.</p> <p>Application Document 6.3.1.1.A ES Appendix 1.1.A Statement of Competence [APP-088] provides the relevant qualifications of the authors and reviewers involved in the preparation of the ES, including Application Document 6.2.2.10 (B) Part 2 Suffolk Chapter 10 Socio-economics, Recreation and Tourism [REP1A-005].</p>
7	Tourism	<p>The only supporting evidence offered is an undisclosed review of other infrastructure projects, which is said to demonstrate that tourism is not harmed. No witnesses, case studies or comparable locations have been provided. Against this, the Examining Authority has extensive evidence from Suffolk County Council, East Suffolk Council, SEAS, Aldeburgh Town Council and dozens of local businesses that point in the opposite direction.</p>	<p>Application Document 9.40 Visitor and Tourism Assessment Technical Note – Suffolk [REP3-065] presents evidence from several other NSIPs that there are no material impacts on tourism or visitor numbers.</p>
8	Tourism	<p>Over 50 local businesses have formally objected to this scheme. These are not antienergy or anti-infrastructure voices — many did not oppose Sizewell or Scottish Power projects — but they understand their own livelihoods and customer base. Major community assets such as Aldeburgh Jubilee Hall have also expressed serious concern that their financial recovery and long-term viability would be damaged.</p>	<p>In response to the point raised on impacts on local businesses and community assets, the Applicant has previously provided responses to these points raised in Table 2.1.11 (against reference 106) of Application Document 9.34.1(B) Applicant's Detailed Responses to the Relevant Representations Identified by the ExA [REP2-014]. The Applicant is setting up meetings with the local planning authorities to discuss the potential for monitoring impacts on visitors and tourism following the grant of development consent (if granted). The Applicant is also reviewing potential opportunities to liaise with tourism related businesses to seek their views on how tourism impacts can be minimised.</p>
9-10	Traffic and Access	<p>I fully endorse Suffolk County Council's submissions on transport but wish to emphasise how acutely these impacts are felt in Aldeburgh.</p> <p>The A1094 is the town's lifeline. It is the only meaningful route for visitors, for deliveries, and for emergency services. Ipswich Hospital is 24 miles away, serving an ageing population. Any sustained disruption would not simply inconvenience the town — it would put people at risk and undermine confidence in Aldeburgh as a safe and accessible destination.</p>	<p>The Applicant refers to our responses to Aldeburgh Town Council's comments (references 11-18) in Application Document 9.86 Applicant's Comments on Other Submissions Received at Deadlines 3 and 3A to be submitted at Deadline 4.</p>

Reference	Matter	Point Raised	Applicant's Comments
11 - 13	Traffic and Access	<p>The Aldeburgh Roundabout is particularly critical. All traffic entering and leaving the town passes through it, including coaches, cyclists, pedestrians and emergency vehicles. It is also crossed daily by children walking to school, by people accessing the GP surgery, and by residents reaching shops and community facilities. The Applicant proposes to route HGVs through this junction for landfall access and compounds. This is not a marginal impact; it goes to the heart of how the town functions.</p> <p>The Applicant's conclusion that impacts at this junction will be "negligible" is not credible, particularly when Scottish Power's consented project alone has already been assessed as causing adverse effects at the same location. These projects are cumulative, not theoretical.</p> <p>The baseline traffic surveys were carried out in January and February 2024 — historically the quietest months for Aldeburgh — and during a period of exceptional rainfall and travel warnings. This significantly underestimates real-world conditions, particularly in the spring and summer when up to 15,000 visitors a day use the A1094.</p>	<p>The Applicant refers to our responses to Aldeburgh Town Council's comments (references 11-18) in Application Document 9.86 Applicant's Comments on Other Submissions Received at Deadlines 3 and 3A to be submitted at Deadline 4.</p>
14	Traffic and Access	<p>In the coming months, closure of the B1353 (Thorpeness–Aldringham) will push even more traffic through Aldeburgh. This demonstrates why Suffolk County Council is correct in saying the study area must be wider than the Applicant has assumed.</p>	<p>The Applicant refers to our responses to Aldeburgh Town Council's comments (references 11-18) in Application Document 9.86 Applicant's Comments on Other Submissions Received at Deadlines 3 and 3A to be submitted at Deadline 4.</p>
15	Economic and Social Wellbeing	<p>Aldeburgh's economy has changed fundamentally since the construction of Sizewell B. It is now a tourism-led town with hotels, holiday lets, cafés, restaurants, independent retailers and cultural venues that depend on visitors. Comparing the present day with the late 1980s is misleading and not a sound basis for decision-making.</p>	<p>This comment has been noted. Application Document 9.40 Visitor and Tourism Assessment Technical Note – Suffolk [REP3-065] submitted at Deadline 3 has been produced to support the assessment of visitor and tourism impacts associated with the Proposed Project and respond to concerns regarding potential adverse effects on visitor numbers, spending, and perception. As well as reviewing observed impacts from Sizewell B, the technical note also reviewed monitoring reports for Hinkley Point C.</p> <p>The Applicant considers Sizewell B and Hinkley Point C to be appropriate comparators for the Proposed Project. Both projects are energy infrastructure developments located in sensitive coastal environments, including areas with high landscape and environmental value such as Areas of Outstanding Natural Beauty (AONBs), and are therefore relevant when considering potential effects on tourism and visitor assets.</p> <p>Additionally, Sizewell B and Hinkley Point C are substantially larger in scale than the Proposed Project and consequently represent a robust worst-case scenario, with a greater potential for construction and operational effects. In contrast, the Proposed Project is a much smaller scheme with a significantly smaller construction workforce and shorter</p>

Reference	Matter	Point Raised	Applicant's Comments
			<p>construction duration and therefore has the potential for limited effects in comparison.</p> <p>The Applicant is setting up meetings with the local planning authorities to discuss the potential for monitoring impacts on visitors and tourism following the grant of development consent (if granted). The Applicant is also reviewing potential opportunities to liaise with tourism related businesses to seek their views on how tourism impacts can be minimised.</p>
16	Economic and Social Wellbeing	<p>Evidence from long-standing High Street businesses shows how the town has evolved from a primarily residential service centre into a dedicated visitor economy. That model is now highly sensitive to disruption, congestion and negative perception.</p>	<p>This comment is noted by the Applicant.</p>
17	Economic and Social Wellbeing	<p>There is already evidence that Sizewell C construction workers are displacing holiday visitors from rental accommodation, with knock-on effects for spending in the town. Suggesting that long-term workers spend in the same way as holidaymakers is not supported by any serious economic analysis.</p>	<p>The Applicant refers to our response to 1SERT2 in Application Document 9.73 Applicant's Responses to First Written Questions [REP3-069].</p>
18	Economic and Social Wellbeing	<p>Residents' mental wellbeing is also being affected. The cumulative pressure of multiple energy projects, combined with uncertainty about traffic, noise and economic impacts, is creating significant anxiety across the community.</p>	<p>A response to this comment regarding adverse effects on community health and wellbeing can be found in Table 2.12 (against Reference 126) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014].</p> <p>A response to this comment regarding cumulative health and wellbeing impacts can be found in Table 2.12 (against Reference 127) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014].</p>
19 - 20	Engagement	<p>Finally, I must underline how disappointed I am that this Applicant has not engaged with Aldeburgh and others in any meaningful way. Sizewell C and Scottish Power Renewables have both held public meetings in the town and worked with local representatives.</p> <p>National Grid Electricity Transmission has not done so, despite repeated concerns being raised.</p> <p>Aldeburgh and its surrounding villages deserve to be treated with respect. The current approach gives little confidence that, if consent were granted, the Applicant would work constructively with the community to manage or mitigate the harm caused.</p>	<p>As set out above, the Applicant has engaged extensively with both residents and elected representatives of Aldeburgh, including Aldeburgh Town Council. As set out in Application Document 5.1 Consultation Report [APP-301] residents and representatives were directly invited to respond to the non-statutory, statutory, and targeted consultations undertaken in 2022, 2023 and 2024 respectively. Three public exhibitions were held in Aldeburgh across the non-statutory and statutory consultations, in addition to separate meetings with Aldeburgh Town Council.</p> <p>The Applicant will continue to engage with local communities and representatives and communities, including Aldeburgh Town Council, through and beyond the Examination process.</p>
N/A		<p>As well as the objections to the substance of the Applicant's position, there is growing concern at its approach in refusing to accept the obvious or to engage with our community. The Applicant's approach is in contrast to that of Sizewell C.</p> <p>Sea link and other energy projects are already highly affecting Aldeburgh, Leiston and villages within my division. Having lived in Aldeburgh during the construction of Sizewell B and now Sizewell C and other energy projects, the impacts are constant</p>	

Reference	Matter	Point Raised	Applicant's Comments
		<p>and relentless. There are completely different circumstances and geographic differences which mean that Sizewell B & C cannot be compared like for like, their differences are vast! The construction and potential operation of Sizewell C, a new nuclear power station in Suffolk, is having significant implications for both Aldeburgh & Leiston High Street and tourism in the area, especially in comparison to the existing Sizewell B.</p>	

6. Applicant's Comments on the Submission from London Gateway Port Limited

6.1 Introduction

6.1.1 Table 6.1 summarises the Applicant's comments on London Gateway Port Deadline 3 Response [REP3-114].

Table 6.1 Applicant's Comments on the London Gateway Port Deadline 3 Submission [REP3-114]

Reference	Summary of relevant representation	Applicant's response	LGPL Comment / Response	Applicant's Comments
Deadline 3: (A) LGPL'S comments on Applicant's thematic responses to relevant representations [REP2-024]				
7.22.1	Concerns over the impact of the construction of the marine cable on existing marine traffic. Concern over cable crossing for shipping and navigation in the area.	<p>As part of the Environmental Impact Assessment undertaken for the Proposed Project, the Applicant undertook an assessment of the potential impacts on shipping and navigation, Application Document 6.2.4.7 (B) Part 4 Marine Chapter 7 Shipping and Navigation, submitted at Deadline 1. The assessment recommended the establishment of communication plans with clear protocols to ensure effective communication and coordination between all relevant shipping and navigation stakeholders as a key mitigation for minimising shipping and navigation impacts during the construction phase.</p> <p>During construction and operation, the Applicant will develop a well-coordinated communication strategy, and proactive planning of operations, to ensure safe and efficient operations with minimal disruption to shipping and navigation. A Navigation Installation Plan is being produced post-DCO application submission to provide a mechanism to achieve this. The Applicant has submitted a draft Outline NIP to PINS on 1st September 2025, as part of the Applicant's response to the ExA's</p>	<p>We refer to LGPL's Written Representations [REP1-142] where the point is made the measures proposed in Application Document 6.2.4.7 (B) Part 4 Marine Chapter 7 Shipping and Navigation [APP-080] focus on safety only. They do not consider impacts (including economic impacts) due to the authorised development preventing future deeper draught vessels from accessing the Port altogether. LGPL notes the Applicant has not yet committed to a deadline for the provision of the NIP and looks forward to receiving a draft at the earliest opportunity to ensure there is sufficient time during the Examination for the parties to exchange considered responses.</p>	<p>This is noted by the Applicant. Further consideration of this matter has been provided in an updated version of Application Document 6.2.4.7 Part 4 Marine Chapter 7 Shipping and Navigation at Deadline 4.</p> <p>The Applicant has also submitted an updated version of Application Document 9.12 Outline Navigation and Installation Plan at Deadline 4.</p>

Reference Summary of relevant representation	Applicant's response	LGPL Comment / Response	Applicant's Comments
	<p>s89(3) letter dated 5 August 2025.</p> <p>The Proposed Project currently routes south of the Sunk Deep-Water Anchorage and north of the Sunk W1 Buoy to be further from the Sunk Pilot Station in accordance with requirements of the Harwich Haven Authority, avoiding potential disruption to this navigational feature during the construction phase.</p>		
7.22.2 Query as to how inspection and maintenance of the marine cable will be undertaken Concern over permanent and temporary impacts of installation and repair / maintenance of the cable.	<p>The cable system has been designed to maintain its integrity without the need for routine maintenance. However, monitoring may reveal specific sections that require attention. While cable repairs can occur at any time, they are anticipated to be infrequent. During the operational lifetime of the cable several inspections to examine integrity are foreseen.</p> <p>This is expected to take place annually via remote operated vehicle (ROV)/autonomous underwater vehicle (AUV) in the early stages of the operation moving to every 2 – 5 years once suitable functional/operational stability is established.</p>	<p>LGPL notes the draft DML within the draft development consent order [CR1-027] provides maintenance will be governed by the cable specification and installation plan document which is to be submitted to and approved by the MMO prior to the commencement of Works No. 6 (rather than pursuant to a separate plan).</p>	<p>The Applicant has submitted Application Document 9.92 Outline Cable Specification and Installation Plan at Deadline 4.</p>
7.22.4 Suggestion that no cable joints should be in the Sunk area to protect existing shipping movements. Requests for no cable joints to be located in the Sunk area due to navigational safety concerns.	<p>This suggestion has been factored into routing and noted in Application Document 6.2.4.7 (B) Part 4 Marine Chapter 7 Shipping and Navigation and Application Document 6.3.4.7.A (B) ES Appendix 4.7.A Navigational Risk Assessment, both submitted at Deadline 1. As stated in the NRA, the Proposed Project has committed to avoiding disruption to the Sunk anchorage area and Sunk pilot boarding area during construction by minimising time spent in this region during construction and avoiding cable joints in this area where possible.</p>	<p>The Applicant confirmed at a meeting with shipping and navigation stakeholders on 19 December 2025 there are no planned cable joints within the Sunk area of interest however it is still in early design stages and this will need to be confirmed at final design stage. The Applicant has confirmed it can agree in principle to "no cable joints within the areas of interest". However, LGPL wishes to reiterate that its principal concern is that the approach adopted by the Applicant should not preclude LGPL's ability to dredge to 22 metres below CD across the Sunk Pilot Boarding Area (with an allowance of 0.5 metres for over dredging) (and the other relevant depths in the other areas of</p>	<p>A Plan of the Areas of Safeguarded Water Depth has been submitted at Deadline 4 (Application Document 9.104 Areas of Safeguarded Water Depth Plan).</p> <p>The Applicant has agreed to the terms of a commitment to secure the following three Areas of Safeguarded Water Depth:</p> <p>Sunk Pilot Boarding area to a level of 22 metres below Chart Datum.</p> <p>Long Sand Head Two-Way Route crossing area, to a level of 12.5 metres below Chart Datum.</p> <p>Northeast Spit area to a level of 12.5 m below Chart Datum.</p> <p>In all cases makes allowance for an 'over-dredge' tolerance of 0.5 m in addition to the stated depths attributable to standard dredging methodology.</p>

Reference Summary of relevant representation	Applicant's response	LGPL Comment / Response	Applicant's Comments
	<p>The number of campaigns is currently projected to be 2, each of c. 60 km. The jointing point of the cables will aim as far as practicable to be outside the Sunk area and the higher risk area to the cables in this heavily trafficked portion of the route. If a single lay campaign is proposed by the Installation Contractor, there will be no need for a joint (only if the cable is accidentally damaged or suffers a technical failure within the Sunk area (i.e. post installation campaign) will a repair joint will be required).</p>	<p>interest). This should be secured by the Requirement. LGPL would also prefer no cable joints in the Areas of Interest due to consequential increased construction and maintenance activities and welcomes the Applicant's agreement in principle to no cable joints in the Areas of Interest. LGPL is happy to discuss the question of cable joints (and crossings) further with the Applicant.</p>	<p>The future dredging depths for the three Areas of Safeguarded Water Depth are currently secured within the Outline Cable Specification and Installation Plan (Application Document 9.92) submitted at Deadline 4. Under Condition 4 of the DML a Cable Specification and Installation Plan document in respect of those licensed activities, which is in general accordance with the principles set out in the outline Cable Specification and Installation Plan must be submitted to the MMO for approval before works can commence. This commitment is included within the Protective Provisions with PLA and LGPL which are currently being developed.</p> <p>The Applicant confirms that it is reviewing the Securing Mechanisms for all Shipping and Navigation commitments for the Proposed Project, this includes the dDCO Requirements and DML conditions. An update to Application Document 3.1 draft Development Consent Order will be submitted at Deadline 5.</p> <p>The Applicant confirms that we are currently reviewing the REAC and associated Requirement 6 in light of the points raised at the ISH2, and we propose to ameliorate that drafting such that the provisions raised at the hearing are appropriately secured through the REAC which will be submitted at Deadline 4A.</p>
7.22.5 Requirement for cable installation (and associated works) to be north of both the Storm Buoy and the W1 buoy, and south of the charted Sunk deepwater anchorage. - Concerns over proximity to Sunk due to possible restrictions on access requirements. - Requests of cable to be north of both the Storm Buoy and the W1 buoy, and south of the charted Sunk deepwater anchorage, due to navigational safety concerns.	<p>Through discussion with Harwich Haven Harbour Authority, the route has been refined to route north of the Sunk W1 buoy and south of the Sunk deep-water anchorage, as requested, to minimise disruption to the Sunk pilot boarding station during the construction phase. This is discussed in Application Document 6.2.4.7 (B) Part 4 Marine Chapter 7 Shipping and Navigation and Application Document 6.3.4.7.A (B) ES Appendix 4.7.A Navigational Risk Assessment, both submitted at Deadline 1.</p>	None.	<p>This is noted by the Applicant.</p>
(B) LGPL responses to the Applicant's comments on written representations [REP2-034]			
2.14 North East Spit & Long Sand Head Vessels bound for the Port regularly use the North East Spit pilot station with vessels transiting from the pilot station via Prices Channel or the DWRs. For these routes to remain viable, a depth of -12.5m CD must be maintained.	<p>This is noted by the Applicant. The Applicant has been in ongoing discussions with ports including the Port of London Authority and London Gateway Port regarding water depth safeguarding requirements in this area. Further information on this matter is provided in Application</p>	<p>We refer to LGPL's comments on Application Document 9.74 Shipping and Navigation Under Keel Clearance Marine Engineering Technical Note submitted at Deadline 2 [REP2-055] contained in Part B of LGPL's response in respect of the PLA's North East Spit Area. We also refer to our comments in LGPL's responses to the ExA's Written</p>	<p>The Applicant has responded to LGPL's first comment here, which refers to PLA's Northeast Spit Area, in Application Document 9.36 Applicant's Comments on Other Submissions Received at Deadline 2 [REP3-064].</p> <p>The Applicant has responded to LGPL's second comment here, which refers to summarising recent discussions on safeguarded</p>

Reference Summary of relevant representation	Applicant's response	LGPL Comment / Response	Applicant's Comments
	Document 9.74 Shipping and Navigation Under-Keel Clearance Marine Engineering Technical Note [REP1A-038].	Questions and Requests for Information (ExQ1) [PD-017] submitted at Deadline 3 which summarise recent discussions with the Applicant in respect of securing water depths.	depths, in Application Document 9.87 Applicant's Comments on Responses to First Written Questions submitted at Deadline 4.
3.6 Energy Policy The Proposed Route therefore runs through IMO designated routes and it is clear from the East Inshore and East Offshore Marine Plan proposals significantly reducing UKC are not permitted. However, the Applicant's Marine Plan Policy Assessment [APP-298, Table 1.1] states that Policy PS1 is 'screened in' but that: "Under-keel clearance also not likely to significantly reduce and has been considered within Application Document 6.2.4.8 Part 4 Marine Chapter 8 Commercial Fisheries." On the basis that "A risk based burial approach will be used where cables will be buried to a minimum DOL to the top of the cable of 0.5 m (in areas of bedrock), with a target DOL for the Proposed Project of approximately 1 m to 2.5 m, assessing cable protection risk factors such as sediment type, shallow geology, sediment mobility, fishing activity, shipping movements and anchor deployment along the route", it is concluded that the proposed project is in accordance with the policy objectives of PS1. It is LGPL's position it is not.	This is noted by the Applicant. The Applicant is in ongoing discussions with ports including London Gateway Port regarding under-keel clearance and water depth safeguarding requirements. Further detailed response will be provided at Deadline 4, when the Applicant will provide an updated version of Application Document 6.2.4.7 (B) Part 4 Marine Chapter 7 Shipping and Navigation [REP1059]	LGPL looks forward to reviewing the updated version of Application Document 6.2.4.7 (B) Part 4 Marine Chapter 7 Shipping and Navigation [REP1059] which will be provided at Deadline 4.	This is noted by the Applicant.
3.8 Energy Policy For reasons set out below, the dDCO (in its current form) will interfere with current activity and the opportunity to expand the Port. However, the Applicant's Marine Plan Policy Assessment [APP-298, Table 1.1] states that Policy PS3 is 'screened in' but that <i>Impacts to Shipping and Navigation from the Offshore Scheme are either broadly acceptable or tolerable if as low as reasonably practicable (ALARP). The Proposed Project does not interfere with the expansion of ports and harbours in the Study Area.</i> As such, the risks and therefore any significant effects are considered to be tolerable and ALARP. A	This is noted by the Applicant. Consideration on the requirements and conditions of the DML are ongoing and will be subject to change upon further engagement with stakeholders. An updated draft DML will be provided at Deadline 3. The Applicant is in ongoing discussions with ports including London Gateway Port regarding concerns surrounding potential impacts to shipping and navigation, in particular, surrounding safeguarding water depth and future access to ports.	LGPL looks forward to reviewing the updated version of Application Document 6.2.4.7 (B) Part 4 Marine Chapter 7 Shipping and Navigation [REP1059] which will be provided at Deadline 4 as well as the updated draft DML which will be provided at Deadline 3.	This is noted by the Applicant.

Reference	Summary of relevant representation	Applicant's response	LGPL Comment / Response	Applicant's Comments
	<p><i>detailed assessment is presented in Application Document 6.2.4.7 Part 4 Marine Chapter 7 Shipping and Navigation.” (our emphasis). On that basis “Timely and efficient communication will be given to sea users in the area via Notices to Mariners (NtM), Kingfisher Bulletins, Navigational Telex (NAVTEX), and Navigational Areas (NAVAREA) warnings.”, and it is concluded that the proposed project is in accordance with the policy objectives of PS3. It is LGPL’s position it is not.</i></p>	<p>Further detailed response will be provided at Deadline 4, when the Applicant will provide an updated version of Application Document 6.2.4.7 (B) Part 4 Marine Chapter 7 Shipping and Navigation [REP1059].</p>		
4.18	<p>LGPL CONCERNS Cable Crossings</p> <p>The Applicant has not set out the points raised by LGPL here.</p>	<p>LGPL notes the Applicant has not commented on LGPL’s concerns raised in paragraph 4.18.</p>	<p>LGPL made the point in its Written Representation [REP1-142] that there was no meaningful assessment of the impacts on shipping and navigation and that areas where cables are to be buried had not been identified. LGPL also noted the proposed mitigation measures were insufficient and would not preclude a scenario where vessels were prevented from accessing the Port during the construction phase as a consequence of reduction in depths. We note the Applicant has not commented on the concerns raised by LGPL here and presumably this omission was an error on the basis the Applicant provided the Shipping and Navigation Under-Keel Clearance Marine Engineering Technical Note [REP1A-038] at Deadline 1A which includes some analysis of seabed morphology at the Sunk Pilot Boarding Area and explains co-engineering and collaboration will be required to ensure 12.5 metres below Chart Datum can be realised at the North East Spit Area.</p>	<p>The Applicant apologises for the absence of LGPL’s paragraph 4.18 in Application Document 9.79 Applicant’s Comments on Written Representations [REP2-034]. The absence was an administrative error.</p> <p>To provide further assessment of the shipping and navigation matters identified, the Applicant has updated Application Document 6.2.4.7 Part 4 Marine Chapter 7 Shipping and Navigation and Application Document 6.3.4.7.A (B) Navigational Risk Assessment submitted at Deadline 4.</p>
4.19	<p>LGPL CONCERNS</p> <p>Cable Crossings It is also significant that Chapter 10 of the Environmental Statement (Socio-Economics, Recreation and Tourism) does not address the offshore impacts on shipping and navigation but concentrates only on on-shore impacts.</p>	<p>The Applicant assumes that this comment related to Application Document 6.2.2.10 (B) Part 2 Suffolk Chapter 10 Socio-Economics, Recreation and Tourism [REP1A-005]. This chapter forms part of the DCO application focusing on the onshore scheme. As such it only focuses on impacts associated with the onshore scheme. With</p>	<p>The Applicant’s assumption is incorrect as Application Document 6.2.2.10 (B) Part 2 Suffolk Chapter 10 Socio-Economics, Recreation and Tourism [REP1A-005] had not been produced by Deadline 1.</p> <p>The Applicant’s suggestion the potential socioeconomic effects on shipping and navigation have been considered in Application Document 6.2.4.7 (B) Shipping and Navigation [REP1-059] is</p>	<p>This is noted by the Applicant. Further consideration of this matter has been provided in the updated Application Document 6.2.4.7 Part 4 Marine Chapter 7 Shipping and Navigation at Deadline 4.</p> <p>The Applicant re-iterates it has agreed to the terms of a commitment to secure the following three Areas of Safeguarded Water Depth.</p>

Reference Summary of relevant representation	Applicant's response	LGPL Comment / Response	Applicant's Comments
	<p>regard to the offshore scheme, socio-economic effects are considered for individual sectors as part of the wider assessment of impacts on that industry. For example, for the offshore scheme, potential effects on the fisheries industry are assessed in detail in Application Document 6.2.4.8 (B) Part 4 Marine Chapter 8 Commercial Fisheries [REP1A009] and potential effects on shipping and navigation are assessed in Application Document 6.2.4.7 (B) Shipping and Navigation [REP1059]. Potential effects on other sea users including marine recreation and tourism activities are considered in Application Document 6.2.4.9 (B) Part 4 Marine Chapter 9 Other Sea Users [REP1-061].</p>	<p>not correct as it does not assess the socioeconomic impact of vessels being precluded, now or in the future, from using navigation channels into the ports.</p>	
5.1 LGPL's ASKS LGPL is of the view that a Requirement must be added to the dDCO [AS-087] to secure the necessary UKCs and safeguard pilotage activity.	<p>This is noted by the Applicant. Consideration on the requirements and conditions of the DML are ongoing and will be subject to change upon further engagement with stakeholders. An updated draft DML will be provided at Deadline 3. The Applicant is working with London Gateway Port and other ports to secure commitments in Protective Provisions</p>	<p>LGPL looks forward to reviewing the updated draft DML and draft Protective Provisions</p>	<p>This is noted by the Applicant. Protective Provisions have been issued to LGPL for review on the 29 January 2026.</p>

7. Applicant's Comments on the Submission from Cadent Gas Limited

7.1 Introduction

7.1.1 Table 7.1 summarises the Applicant's comments on Cadent Gas Limited Deadline 3 Response [REP3-113].

Table 7.1 Applicant's Comments on the Cadent Gas Limited Deadline 3 Submission [REP3-113]

Reference	Matter	Point Raised	Applicant's Comments
2.1.1 Comments on Any Other Submissions Received at Deadline 3			
1.1		<p>1.1 This is a written submission made on behalf of the Cadent Gas Limited ("Cadent") in respect of comments on Deadline 2 submission, in particular the "Applicant's Responses to Relevant Representations from Statutory Consultees and Bodies [REP2-016]. The response to Cadent's Relevant Representation appears at Table 3.1.</p> <p>1.2 As noted by Cadent in its Relevant Representation, Cadent has identified that it will require adequate protective provisions to be included within the Sea Link Development Consent Order to ensure that its apparatus and land interests are adequately protected and to include compliance with relevant safety standards. The Applicant has indicated as follows in Table 3.1 of REP2-016:</p> <p><i>"Cadent's request for bespoke Protective Provisions is acknowledged. The Applicant has undertaken a review of the identified asset interfaces as a basis for assessing the suitability of the Protective Provisions that have been put forward. Ongoing engagement with Cadent will seek agreement on the terms for asset protection, land rights and other requirements over the lifetime of the Proposed Project, and where necessary, their inclusion in the draft DCO" (our emphasis).</i></p> <p>1.3 Discussions on protective provisions have been occurring but they are being driven by the Norwich to Tilbury Development Consent Order application, which is behind in the examination process. Moreover the above response provides no certainty to Cadent that protective provisions will be included in the draft DCO for the Sea Link project.</p> <p>1.4 The draft DCO's submitted to date do not include specific protective provisions for the protection of Cadent. For the purposes of the Planning Act 2008 and section 127, Cadent is a statutory undertaker. Cadent require its own protective provisions in a form which is consistent with its template protective provisions to ensure that there is no serious detriment to the carrying on of Cadent's undertaking.</p>	<p>The Applicant is in discussions with Cadent Gas over these issues, as set out in Applicant's Response to January Hearing Action Points CAH1 ISH2 - Deadline 4. An updated version of the Statement of Common Ground with Cadent [REP1-087] will be submitted at a future deadline.</p> <p>Discussions with Cadent on the form of Protective Provisions has been productive, with Cadent confirming that these should now be agreed subject to final comments. Protective Provisions for the benefit of Cadent will be included in the draft DCO at a later deadline.</p>

1.5 The Applicant is aware of Cadent Gas Limited's template protective provisions and section 3.1.4. of "Advice Note Fifteen 15: drafting Development Consent Orders" ("Advice Note 15") provides:

"4.1 Applicants are encouraged to agree Protective Provisions with the protected party(ies) prior to submitting the application for development consent. Where agreement on Protective Provisions has not been reached during the Preapplication stage, applicants should, as a minimum, submit with their application the standard Protective Provisions for all relevant protected parties with any amendments that the Applicant is seeking annotated with full justification included within the Explanatory Memorandum."

1.6 Notwithstanding Advice Note 15, the draft Development Consent Order has been submitted with no protective provisions for the benefit of Cadent. This is not an acceptable position. It is widely understood and has been rehearsed in numerous Development Consent Order applications that the protective provisions for Electricity, Gas, Water and Sewerage Undertakers are not acceptable to Cadent.

1.7 In light of the above and the Applicant's comments at Deadline 2 we wish to make the Examining Authority aware of the form of protective provisions which Cadent would wish to see on the face of the draft DCO for this project to enable these to be included in the Examining Authority's proposed schedule of changes. The form of the protective provisions are appended to this submission and an explanation as to why these protective provisions need to be included is set out in the remainder of this submission.

REGULATORY PROTECTION FRAMEWORK

2.1 Cadent require all applicants carrying out development in the vicinity of their Apparatus to comply with:

- (a) CD/SP/SSW/22 Cadent's policies for safe working in the vicinity of Cadent's Assets;
- (b) ICE (institution of Gas Engineers) recommendations IGE/SR/18 Edition 2 Safe Working Practices to Ensure the Integrity of Gas Pipelines and Associated Installations, and
- (c) the HSE's guidance document HS(G)47 Avoiding Danger from Underground Services.

2.2 The industry standards referred to above have the specific intention of protecting:

- (a) the integrity of the pipelines and thus the distribution of gas;
- (b) the safety of the area surrounding gas pipelines;
- (c) the safety of personnel involved in working with gas pipelines.

2.3 Cadent requires specific protective provisions in place for an appropriate level of control and assurance that the industry

regulatory standards will be complied with in connection with works in the vicinity of Cadent's Apparatus.

PROTECTIVE PROVISIONS

3.1 Cadent seeks to protect its statutory undertaking, and insists that in respect of works in close proximity to its Apparatus as part of the authorised development the following procedures are complied with by the Applicant:

- (a) Cadent has had the opportunity to review and consent to the plans, methodology and specification for works within 15 metres of any Apparatus, works which will adversely affect their Apparatus or otherwise breach distances/guidance set out in paragraph 2 above.
- (b) DCO works in the vicinity of Cadent's apparatus are not authorised or commenced unless protective provisions are in place preventing compulsory acquisition of Cadent's land or rights or overriding or interference with the same.
- (c) DCO works in the vicinity of Cadent's apparatus are not commenced unless there is third party liability insurance effected and maintained for the construction period of the relevant authorised works and that the person or body undertaking the works (acknowledging the ability to transfer the benefit of the DCO) has the appropriate net worth to enable it to meet any liability arising from damage to Cadent's apparatus (acknowledging the potential significant consequences of damaging a gas pipeline) or there is appropriate security in place through a bond or guarantee.

3.2 Cadent maintain that without an agreement or qualification on the exercise of unfettered compulsory powers or works in the vicinity of its Apparatus the following consequences will arise:

- (a) Failure to comply with industry safety standards, legal requirements and Health and Safety Executive standards create a health and safety risk.
- (b) Any damage to Apparatus has potentially serious hazardous consequences for individuals/property located in the vicinity of the pipeline/apparatus if it were to fail.
- (c) Potentially significant consequences arising from lack of continuity of supply;

3.3 Insufficient property rights have the following safety implications:

- (a) 3.4 Inability for qualified personnel to access apparatus for its maintenance, repair and inspection.
- (b) Risk of strike to pipeline if development occurs within the easement zone in respect of which an easement/restrictive covenant is required to protect the pipeline from development.

(c) Risk of inappropriate development within the vicinity of the pipeline increasing the risk of the above.

The form of the protective provisions that should appear on the face of the dDCO are appended to this submission.

8. Applicant's Comments on the Submission from Friston Parish Council and Substation Action Save East Suffolk Limited

8.1 Introduction

8.1.1 Table 8.1 summarises the Applicant's comments on Friston Parish Council and Substation Action Save East Suffolk Limited Deadline 3 Response [REP3-129]

Table 8.1 Applicant's Comments on the Friston Parish Council and Substation Action Save East Suffolk Limited Deadline 3 Submission [REP3-129]

Reference	Matter	Point Raised	Applicant's Comments
2.1.1 Comments on Any Other Submissions Received at Deadline 3			
N/A	Cumulative Impact	<p>In response to Reference 8,9,10 and 11 of Application Document 9.79 Applicant's Comments on Written Representations:</p> <p>As is clear from the TEC register entry for Red House Farm (entry number 1758 - Appendix B of FPC's written representations [REP1-301]) the Friston connection is one and the same thing as the South Anglia Connection Node. NESO makes its recommendations in close collaboration with NGET (as the owner of the transmission system) together with the developer based on the location of the developer's proposed project. It does not act unilaterally in a vacuum. It is suggested that NESO gives evidence in the examination.</p>	<p>As set out within Application Document 9.79 Applicant's Comments on Written Representations [REP2-034], the Proposed Project will not undermine the effectiveness of the landscape mitigation set out for the consented EA1N and EA2 Development Consent Orders (DCOs). Since Scottish Power Renewables (SPR) submitted their detailed landscape substations masterplan in December 2025, the Applicant submitted a plan which demonstrates that the Proposed Project does not materially affect the landscape mitigation in SPRs submitted landscape substations masterplan and that the function of the landscape mitigation can be retained with the cables in situ (see Figure D-1 of Appendix D submitted in response to 1LVIA15 (Application Document 9.73.1 Applicant's Responses to First Written Questions – Appendices [REP3-070])). Figure D-1 has since been updated to reflect the potential additional interaction of LionLink and is presented in Appendix D to Application Document 9.90 Applicant's Response to January Hearing Action Points from Compulsory Acquisition Hearing 1 (CAH1) and Issue Specific Hearing 2 (ISH2) – Deadline 4 submitted at Deadline 4.</p> <p>The South Anglia Connection Node referred to in the TEC registers is a holding position used to get applicants into their system in advance of the relevant system studies and other exercises being undertaken which will influence which specific connection point is offered. This may be Friston (Kiln Lane), or another substation in East Anglia.</p> <p>The NESO is a separate government-owned entity and NGET cannot speculate or comment on whether they may be intending to appear at the Examination.</p>
N/A	Cumulative Impact	<p>In response to Reference 12 of Application Document 9.79 Applicant's Comments on Written Representations:</p> <p>Is National Grid saying that Sealink will have no impact on the landscape mitigation required under the EA2 and EA1N DCOs? National Grid's response is confused. It is to be noted that National Grid admits that it is in fact taking account of the effect of further development at Friston.</p>	
N/A	Cumulative Impact	<p>In response to Reference 16,17,18,20,21 of Application Document 9.79 Applicant's Comments on Written Representations:</p> <p>National Grid admits that it is working in collaboration with Helios. The location of the Helios project is known so that the direction</p>	<p>The Applicant is regularly meeting with Helios and we are yet to see details of the project either publicly or privately, but even if we knew the direction of the cables to the Friston Substation, simply knowing which direction the cables for a forthcoming project may come from is not sufficient information to allow any meaningful cumulative</p>

Reference	Matter	Point Raised	Applicant's Comments
		<p>from which the AC cables will come from the Helios project to the National Grid connection hub is also known. In relation to all future projects given National Grid's extensive knowledge and engineering expertise it is incorrect to say information does not exist. It is just incomplete which is no bar to an assessment. In relation to the "third project" National Grid has already considered some of the effects of the converter station at Saxmundham by including it in its plans.</p>	<p>effects assessment to be undertaken. In line with the Planning Inspectorate guidance, the Helios Project is at the lowest tier of certainty i.e. Tier 3 (noting this relates to certainty of information, not certainty that the project will proceed). For some Tier 3 projects there may be information available from non-statutory consultation or made available on developers websites; this is not the case for the Helios Energy Park project. The Applicant draws the respondent's attention to the FAQ section of the Helios Energy Park website (https://www.heliosenergypark.co.uk/faqs), extracts of which are included below:</p> <p>"Q1: Where is the site and how large is it?</p> <p>A: <i>The site will comprise several parcels of land near Friston in East Suffolk. We are at an early, pre-design stage and will confirm the exact site area once further scoping work is complete.</i>"</p> <p>And</p> <p>"Q3: Where can I see the plans?</p> <p>A: <i>We don't have that level of detail available at this stage. We are at an early, pre-design stage in the process and will provide further details in due course. We anticipate being able to publish further information later in 2025.</i>"</p> <p>The PINS guidance on the assessment of cumulative effects sets out clearly the information that needs to be gathered at Stage 3 of the CEA process:</p> <p><i>"At this stage, the Applicant should gather information on each of the other existing and, or approved developments shortlisted at Stage 2. The applicant is expected to compile detailed information to inform the Stage 4 assessment. The information should include but not be limited to:</i></p> <p><i>proposed design and location information</i></p> <p><i>proposed programme of construction, operation and decommissioning</i></p> <p><i>environmental assessments that set out baseline data and effects arising from the other existing and, or approved development".</i></p> <p>None of this information exists for either Helios or the 'third project'.</p> <p>This approach accords with case law, such as the Judicial Review of the case of SASES v. SoS, EA1N and EA2, where Lang J stated:</p> <p><i>"I accept the submissions made by the Defendant and the Applicants that the approach taken by the Defendant did not constitute a breach of the EIA Regulations 2017. The developments in question were not "existing and/or approved projects" in respect of which a cumulative assessment would be</i></p>

Reference	Matter	Point Raised	Applicant's Comments
			<p>required by reference to paragraph 5 of Schedule 4 to the EIA Regulations 2017".</p> <p>And:</p> <p><i>"The two projects were at such an early stage that there was not sufficient reliable information to undertake a satisfactory cumulative assessment. That approach was in accordance with the guidance in Advice Note Seventeen."</i></p> <p>The Applicant suggests that the Helios project is not an "existing and/or approved project" and there is "not sufficient reliable information to undertake a satisfactory cumulative assessment".</p> <p>With respect to the 'third project' the Applicant did include information in some early illustrative information, however these were not formal cumulative assessments in Environmental Impact Assessment (EIA) terms. This is because there is no 'third project' proposed, and, as such, it is clearly not an "existing and/or approved project"</p>
N/A	Cumulative Impact	<p>In response to Reference 22 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>The "separation" between NGV and NGET is a convenient legal fiction. They are part of the same group owned by National Grid plc which appoints its directors and determines its capital structure. It is highly likely that some of employees of each of NGV and NGET will have been employees or secondees of the other at some point in their careers.</p> <p>The purported influence can hardly be considered as "profound" when separate AC cable routes are being proposed in different locations for Sealink and Lionlink with no consideration of a cable route for a third convertor station at Saxmundham.</p>	<p>The Applicant has previously explained that there is a formal separation between National Grid Ventures (NGV) and National Grid Electricity Transmission (NGET) and that they are separate legal entities.</p>
N/A	Cumulative Impact	<p>In response to Reference 23 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>It is noted that National Grid admits that the "developments cited by SASES may be within the ZOI of the proposed project".</p>	<p>Simply knowing that a forthcoming project is potentially within the Zone of Influence (ZOI) of the Proposed Project is not sufficient for any level of meaningful cumulative effects assessment to take place.</p>
N/A	Cumulative Impact	<p>In response to Reference 25 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>National Grid is in denial as to the effect of the ever-increasing number of projects proposed to connect to Friston on the residents of Friston who have already had to deal with blight and uncertainty for eight years with no prospect of this coming to an end.</p>	<p>The Applicant has nothing further to add to its previous response.</p>
N/A	Cumulative Impact	<p>In response to Reference 26 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>National Grid's reasons for not pursuing what is self-evidently a sensible solution (i.e. all AC cable routes being installed at the same time) are unconvincing.</p>	<p>The Applicant has nothing further to add to its previous response.</p>

Reference	Matter	Point Raised	Applicant's Comments
N/A	Cumulative Impact	<p>In response to Reference 27 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>Section 9 (2) does not exist in isolation. Environmental impacts have also to be taken into account as well.</p>	This is correct, the Applicant would need to also comply with Schedule 9 of the Electricity Act and the Town and Country Planning (Environmental Impact Assessment) Regulations 2017. However, the original point still stands.
N/A	Development Consent Order	<p>In response to Reference 28, 29, 30, 31 and 32 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>Self-evidently the National Grid connection hub will only be delivered once. There is no need for National Grid to have an "end to end" consent for Sealink where the connection point has already been consented under another DCO and construction started. The question is why should the mitigation for this connection hub be different depending upon the identity of the developer? There needs to be complete clarity that the mitigation will be the same. For example National Grid seems to be unaware of Requirement 15(2) in the EA2 and EA1N DCOs which requires all landscape planting which dies or is seriously damaged within 10 years after planting to be replaced. The response to the EXQ1GEN 11 is awaited.</p>	<p>The EA1N and EA2 DCOs benefit Scottish Power Renewable entities, not NGET. Until such a time as NGET has been transferred the relevant benefits of the EA1N or EA2 order powers, NGET requires consent for the substation connection into the network in Suffolk. It is nonetheless anticipated that this will be delivered under the extant EA2 DCO.</p> <p>The Applicant needs to include the Bays required to connect the Proposed Project to the transmission network in any case.</p> <p>Where appropriate and relevant, mitigation for the National Grid substation at Friston being proposed as part of the Proposed Project will reflect that being designed by SPR.</p>
		<p>In response to Reference 33 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>Mitigation of Flood Risk - it is noted that National Grid "anticipates that the drainage approach.....will be implemented by SPR and NG in all scenarios." (emphasis added) Given the advanced state of the Discharge of Requirement process for EA2 there seems no reason why National Grid cannot commit to the operational drainage management plan which will be approved pursuant to the EA2 DCO.</p>	The Applicant proposes to submit a 'Drainage Management Plan' for each of Suffolk and Kent, to be substantially in accordance with the Drainage Strategies. Should the National Grid substation at Friston (Kiln Lane) be delivered under the Proposed Project consent (which is not anticipated), then the detailed drainage would be designed accordingly.
N/A	Development Consent Order	<p>In response to Reference 34 and 35 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>Scenario 2 – the consents and land rights for the National Grid connection hub already exist in both the EA2 and EA1N DCO's. It is a straightforward legal mechanical exercise for those to be transferred to National Grid as provided for in those DCOs. No one is denying that the National Grid connection hub is an essential component of Sealink. The simple point is that the necessary consents already exist and can be easily transferred to the extent necessary.</p>	SPR's DCOs provide for the benefit of the consent and Compulsory Acquisition rights to reside with SPR, and not to National Grid or indeed any other party. The SPR DCOs contain a provision allowing for a Transfer of Benefit and the Applicant is working with SPR in that regard. The Applicant is also working with SPR in respect of land rights. The SPR DCO rights granted are currently for SPR alone to develop the connection hub. Given the integral nature of the Friston substation, National Grid needs to hold deployable powers to construct and operate the asset, including land rights. At present the Applicant is unable to rely on SPR's consent or land rights.
N/A	Noise	<p>In response to Reference 38, 39 and 40 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>Whilst FPC welcomes that National Grid has at last after several years recognised the existing mitigation in respect of working hours for the connection hub the problem remains in respect of the remainder of the project as construction noise will travel from the remainder of the project particularly from the DC and AC cable routes.</p>	The cable works associated with the Proposed Project is a transient operation which will move along the cable route and therefore will not be focused in one location for long periods of time; therefore, the Applicant has requested the core working hours for the Proposed Project based on the flexibility required in the program as previously stated in responses to the ExA.

Reference	Matter	Point Raised	Applicant's Comments
N/A	Noise	<p>In response to Reference 41-45 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>FPC notes the reassurances given by National Grid in respect of noise levels and infrequency but these are in no way secured in the DCO. Furthermore National Grid has stated that noise from the operation of the substation is only “negligible and not significant” during the “normal operation of the substation” (emphasis added). In addition presumably as more and more connections are made at the National Grid connection hub the level of frequency will increase? A community should not be expected to rely on the unsecured assurances of National Grid, because if there were to be a problem what recourse would the community have?</p>	<p>The frequency of occurrence may increase should more connections be added. However, it would still remain well below the frequency at which significant adverse effects could occur, even if the noise level itself were to exceed the threshold for potential significant effects. For significant effects to arise, both the noise level and the frequency of occurrence would need to exceed their respective thresholds. In this case, neither threshold would be surpassed, and there is a comfortable safety margin to both elements. This conclusion remains the same even with additional connections.</p> <p>The main source of noise at the National Grid substation would be the operation of the circuit breakers inside the building. This is a short-term noise which would occur a limited number of times per year.</p> <p>Notwithstanding the above the Applicant is reviewing the noise limits provided within the SPR DCO and, as part of the Actions arising from ISH2, will provide further details at a future deadline.</p>
N/A	Traffic	<p>In response to Reference 46 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>FPC maintains the position that the B1121 from Benhall through Sternfield and Friston to the A1094 is unsuitable for HGV and construction traffic. However FPC notes the National Grid's Comments on the Local Impact Report submitted by Suffolk County Council (REP2-026) ref 11.125 and its reliance on the Outline Construction Management and Travel Plan (CR1-041). However this plan does not address the concerns of FPC not least as there are no restrictions on the use of the multiple access points on the B1121 (S-APs 10 and 12 and S-MAP 3) or on Grove Road (S-AP 8 and 9 and S-MAP 1). Further the working hours in this plan require alignment to the working hours permitted under the EA2 and EA1N DCOs.</p>	<p>In response to the first points about the B1121 and A1094, the Applicant has previously responded to these points in Table 9.1 of Application Document 9.35.1 Applicant's Comments on Local Impact Report from Suffolk County Council [REP2-026] and in Table 2.9 of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014].</p> <p>In response to the second point on no restrictions on the use of multiple access points on the B1121 and Grove Road, Grove Road (which is designated as a quiet lane) will only be used as a vehicle crossover between two proposed access points, to allow construction vehicles to continue along the haul road. Therefore, Grove Road will not be used by construction vehicles, other than when these are required to cross Grove Road (which will be managed). For the B1121 Main Road to the south of Saxmundham, this is where the main access point, S-BM09, is located for the Proposed Project. Once the new access to the Saxmundham Converter Station, including the Fromus Bridge, is constructed, all construction traffic will use this access from the B1121 Main Road, avoiding routing through Saxmundham.</p> <p>In response to the third point about working hours, the Applicant has previously responded on comments relating to the proposed working hours within Table 2.2 Significant Issues and Table 2.9 Traffic and Transport of the response to Suffolk County Council Relevant Representations (Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014]).</p>
N/A	Traffic	<p>In response to Reference 48 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>National Grid has not addressed the concern that the excessively sized bell mouth (access point S-AP-12) accessible via the Saxmundham Road and Aldeburgh Road on the B1121 (SRLs</p>	<p>The Applicant considers that the Construction Access Strategy for the substation near Friston is clear. All construction traffic for the substation will use a dedicated haul road from Snape Road (B1069), avoiding the B1121 through Friston village. The B1121</p>

Reference	Matter	Point Raised	Applicant's Comments
		<p>8&9) will be used for construction activity when the National Grid connection hub has to be extended for future projects. National Grid has not explained adequately why HGV access to what is meant to be an operational access road for maintenance is necessary. Furthermore even if it is necessary given the infrequency of use there are far less intrusive means of designing this access from a landscape perspective.</p>	<p>through Friston will only be used for minor works to existing overhead line towers, requiring minimal vehicle access.</p> <p>Coordination has been undertaken with the SPR projects resulting in the proposed access at S-AP-12 aligning with the access proposed by SPR in terms of location and scale. The substation near Friston is included in the Proposed Project DCO to ensure a comprehensive consenting position. However, in Scenario 1 assessed in the EIA and reported on in the Environmental Statement (ES), it is expected to be implemented by SPR under their existing DCOs (EA1N and EA2), including the construction of the permanent access. If SPR does not proceed, the Applicant will construct the substation under Scenario 2 using the same access and mitigation measures.</p> <p>S-AP-12 has been sized to accommodate Abnormal Indivisible Load (AIL) and Heavy Goods Vehicle (HGV) access which could be required during future maintenance operations at the site. HGV vehicles would be required to bring Mobile Elevated Working Platforms (MEWPs) to the site for inspection works; HGVs would be required to bring replacement equipment and AILs including mobile cranes could be required for some maintenance activities.</p> <p>The detailed design of the access will be undertaken post consent and will be subject to technical approval from the Local Highway Authority.</p> <p>Any future extension project at the site would require planning which would assess any proposed use of the access by that project. The access is being proposed and will be designed to accommodate the needs of the Proposed Project and the consented SPR projects at the site.</p>
N/A	Safety	<p>In response to Reference 49-52 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>In its response National Grid states that fires are a “rare” risk . In its responses to SASES’s and FPC’s relevant representations (now REP2-022) it was stated that they are “relatively rare” – paragraph 77 of Applicant’s Responses To Selected Relevant Representation Responses Table 6.8. Could National Grid please clarify? National Grid also states that “rigorous maintenance and inspection programs and safety protocols” exist. The mere existence of protocols does not stop catastrophic incidents as the substation fire at the site serving Heathrow Airport demonstrated. Overall whilst FPC notes the assurances given it is concerned about National Grid’s complacency in saying “There is no risk of fire spreading to vegetation, crops or houses” (emphasis added) – paragraph 77 of Applicant’s Responses To Selected Relevant Representation Responses Table 6.8 (REP2-022). It is difficult to believe there is “no risk” given the proximity of very dry vegetation in periods of low rainfall.</p>	<p>National Grid Substations are designed in line with the relevant Fire legislation (Fire Safety Order: Regulatory Reform (Fire Safety) Order 2005, SI 2005/1541 in England and Wales and the Fire (Scotland) Act 2005 in Scotland), this legislation requires that a fire risk assessment is carried out and kept up to date.</p> <p>The Fire Safety Order requires that fire precautions (such as firefighting equipment, fire detection and warning, and emergency routes and exits) should be provided (and maintained) ‘where necessary’. What this means is that the fire precautions required are those which are needed to reasonably protect relevant persons from risks to them in case of fire. This will be determined by the findings of the risk assessment.</p> <p>The largest risks of fire on a transmission site are wound plant (Transformers); there are no transformers on the National Grid substation.</p> <p>As part of the above process each item which is identified as a fire risk has a Fire Damage Zone applied, this Fire Damage zone does not extend beyond the perimeter fence of the Substation, therefore the rare risk of a fire on the site would not affect the area surrounding the site.</p>

Reference	Matter	Point Raised	Applicant's Comments
N/A	Tourism and Socioeconomic Impacts	<p>In response to Reference 53 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>This response demonstrates how little Sealink will contribute to the local economy. Care should be taken in relation to references to "the East of England" as past experience has demonstrated this extends remarkably far north, west and south and in no way can be regarded as local.</p>	<p>Water Supplies for Fire Fighting Purposes will be in accordance with Building Regulations Approved Document Part B2.</p> <p>The site will have fire detection and alarm systems in accordance with BS EN54.</p> <p>This comment has been noted. Application Document 6.2.2.10 (B) Part 2 Suffolk Chapter 10 Socio-economics, Recreation and Tourism [REP1-005] assesses the impact of the Suffolk Onshore Scheme on employment generation and gross value added (GVA). Applying the average gross direct value added per construction worker in the East of England to the total number of construction workers generated from the Suffolk Onshore Scheme gives the total GVA arising from the construction period. Based on Office for National Statistics (ONS) data on regional gross value added by industry, in 2024 in the East of England, GVA per worker in the construction sector is estimated to be £62,895 per head. By applying this figure to the average net employment generated by the Suffolk Onshore Scheme (20 Full Time Equivalents (FTE) in the 60-minute Drive Time), it is estimated that construction will contribute approximately £1.3 million to the study area and £4.1 million to the national economy.</p> <p>GVA generation arising from the construction period has been calculated based on the compound average GVA per worker in the construction sector in the East of England as data is not published at the more granular Lower Layer Super Output Area (LSOA) derived, 60 Minute Drive Time Catchment Area level. Where possible, data from the 60 Minute Drive Time Catchment Area has been used to inform the assessment of effects.</p> <p>As set out in Application Document 6.2.2.10 (B) Part 2 Suffolk Chapter 10 Socio-economics, Recreation and Tourism [REP1A-005], the number of jobs supported by the Proposed Project is relatively low and short-term, when considered in isolation. The average construction workforce required for the Suffolk Onshore Scheme is 86 FTE per annum respectively. However, the Applicant recognises the importance of realising local skills and employment opportunities and is looking to discuss the terms and develop a Skills and Employment Plan in liaison with the local planning authorities. The Applicant intends to submit outline Skills and Employment Plans at Deadline 6. The Applicant will arrange meetings to progress and discuss suitable opportunities that will form the outline plans with the local authorities.</p>
N/A	Tourism and Socioeconomic Impacts	<p>In response to Reference 54-57 of Application Document 9.79</p> <p>Applicant's Comments on Written Representations:</p> <p>National Grid places great reliance on Government guidance which as evidenced in FPC's written representations (REP1-301) is deeply flawed. In addition National Grid seeks to distance itself from that guidance on the basis it is a matter for DESNZ. However National Grid was a key contributor to the formulation of that guidance. Did National Grid point out that "substations" vary greatly in impact particularly when in reality they become strategic</p>	<p>The Applicant's view is that it is appropriate to consider the guidance referred to as it is an important and relevant consideration.</p>

Reference	Matter	Point Raised	Applicant's Comments
		<p>connection points for a multiplicity of projects with ever-increasing environmental impacts? Furthermore did National Grid point out that the image used by DESNZ for its research was completely unrepresentative of the major “substations” which National Grid was proposing to develop? There is no recognition of the damage that has been done and will continue to be done to the mental and financial well-being of the Friston community.</p>	
N/A	N/A	<p>In response to Reference 1-5 of Application Document 9.79 Applicant's Comments on Written Representations:</p> <p>FPC notes that National Grid admits that the newsletter it circulated to thousands of people in the local community did not accurately represent its intentions with regard to the Sealink project. It should be noted that that same newsletter on its first page states that “No new pylons would be built in Suffolk as part of Sealink”.</p>	<p>The Applicant did not admit that the newsletter referenced was inaccurate. The newsletter outlined the most likely scenario for the construction of Friston (Kiln Lane) substation, namely that construction would take place under SPR's DCOs for EA1N and EA2, as an example of coordination with other developers.</p> <p>The Applicant's response to Friston Parish Council and SASES' queries in Application Document 9.79 Applicant's Comments on Written Representations remains correct.</p> <p>Without inclusion of Friston (Kiln Lane) substation within the Proposed Project, the Applicant would not have certainty that the Proposed Project could be delivered.</p> <p>The newsletter does not imply that the Proposed Project will install cables and ducts for LionLink. It references a scenario where the Proposed Project is granted consent, and LionLink is subsequently also granted consent by 2028 meaning that construction of the bays and installation of the cables to connect LionLink at Friston (Kiln Lane) substation could be delivered without the need to de-mobilise and re-mobilise a construction site, as works to build the substation (including the Proposed Project bays) would not have concluded. This would reduce the overall duration of construction and reduce impacts.</p> <p>Regarding new pylons, the newsletter presents key headlines relating to the most likely scenario, which is that the Proposed Project is connecting into a substation already being delivered under a third-party consent (EA1N or EA2).</p> <p>While there would be a net increase of one pylon tower in either scenario, this is most likely to be delivered under the extant EA1N or EA2 consents. As set out in the newsletter, there would be no new pylons as a result of the Proposed Project in this scenario.</p>

9. Applicant's Comments on the Submission from Suffolk County Council

9.1 Introduction

9.1.1 Table 9.1 summarises the Applicant's comments on Suffolk County Council's Deadline 3 Response [REP3-122].

Table 9.1 Applicant's Comments on the Suffolk County Council Deadline 3 Submission [REP3-122]

Refere nce	Matter	Summary of Submission	Point Raised	Applicant's Comments
2.1.1 Comments on Any Other Submissions Received at Deadline 3				
1	Purpose of the submission	N/A	The document has been prepared by Suffolk County Council to provide a written response to submissions received by the Examining Authority (ExA) at Deadline 2. Examination Library references are used throughout this document to assist readers. The Council has not been able to respond exhaustively to the Applicant's comments on the Council's Local Impact Report (REP2-026) and so has not responded where it is considered that the Applicant's response has not addressed the original comment and the Council has nothing further to add.	Noted.
Table A2 – 3.1 Applicant's comments on Chapter 5: Landscape and Visual				
A2.1	Construction Phase Impacts – Negative 5.35 – 5.39	Refers to limited effects of the Saxmundham and Friston substation on the SECHAONB	Construction activities will also be happening within the cable corridor. The Applicant's response does not address SCC's concerns around the underestimation of effects on the National Landscape. SCC has commented on the S.85 duty technical note at deadline 2 [REP2-062].	The Applicant's position on the assessment of effects on the Suffolk & Essex Coast & Heaths National Landscape (SECHNL) and compliance with the Section 85 duty is set out in the Applicant's Comments to the Response from Interested Party or Affected Person in relation to 1LVIA7 within Application Document 9.87 Applicant's Comments on Responses to First Written Questions submitted at Deadline 4.
A2.2	Construction Phase Impacts – Negative: Cable Corridor 5.40 – 5.41	Refers to commitment to replace removed vegetation Tree planting close to original sites, where the Order Limits allow, would be reviewed.	SCC considers that any mature tree lost to the scheme needs to be replaced at a ratio of 3:1. If this cannot be accommodated within the order limits, locations outside the order limits will need to be sought.	The Applicant has responded to this point in section A2.15 of this document.
A2.3	Construction Phase Impacts – Negative: Landfall Site 5.42 – 5.45	Effects are limited to those associated with the construction activity in the near shore water with the presence of a cable laying barge, not dissimilar to the presence of marine vessels which can be typically seen. Construction around the landfall transition joint pit would be set against a backcloth of woodland and not the focus of views	SCC is concerned that the Applicant is underestimating the adverse visual effects. Should the proposed trenchless construction methods fail the adverse impacts on the sensitive habitats in this area could be severe.	The Applicant's position on the assessment on visual amenity should be referred to within AP39 contained in Application Document 9.90 Applicant's Response to January Hearing Action Points from Compulsory Acquisition Hearing 1 (CAH1) and Issue Specific Hearing 2 (ISH2) – Deadline 4 submitted at Deadline 4. Ecological impacts on habitats have been assessed in Application Document 6.2.2.2 (C) Part 2 Suffolk Chapter 2 Ecology and Biodiversity [REP1-047] and Application Document 6.2.4.2 (C) Part 4 Marine Chapter 2 Benthic Ecology [REP1-053] . There is no expectation that the trenchless construction would fail.

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
A2.4	Construction Phase Impacts – Negative: Effects on designated and defined landscapes 5.46 – 5.58	Defends the assessment	<p>SCC considers that compounds and associated works should be assessed and that there is a difference in perception between agricultural machinery and the machinery required to install the cables. SCC considers that the Applicant has not addressed all points raised, for example the insufficient quantification of impacts. With regards to incongruous features, the Suffolk Coast and Heaths Area of Outstanding Natural Beauty (AONB) Natural Beauty and Special Qualities Indicators V1.8 Version Date: 21 November 2016 report, while referring only to examples of operational built form, does not exclude features of a more temporary nature. The definition of 'incongruous' is 'not in harmony or keeping with the surroundings...' (Oxford Languages), which SCC considers does apply to both construction compounds and construction activities. The backdrop of woodland could potentially make brightly coloured machinery stand out even more and the location close to the B1122 is likely to result in higher numbers of recreational visual receptors being affected, than if the compound was located in a more remote area (notwithstanding other adverse effects this would entail).</p>	<p>The LVIA fully considers construction compounds and associated works in the construction stage assessment. Appendix A 1LVIA9 Natural Beauty Indicators and their Sub-Factors contained within Application Document 9.73.1 Applicant's Responses to First Written Questions – Appendices [REP3-070] provides further detail on how the sub-factors of the Natural Beauty Indicators have the potential to be affected by the Proposed Project including the landfall construction compound and associated works including HVDC cable construction.</p>
A2.5	Construction Phase Impacts – Negative: Potential adverse effects on landscape and visual mitigation measures of other projects 5.59 – 5.61	Tree and hedgerow loss in cable corridors in isolation is not considered to be significant, and it should be noted that the hedgerow loss is temporary only.	<p>SCC would like to clarify that it is not comparing the vegetation loss resulting from Sea Link with that resulting from Sizewell C. However, there are considerable tree and hedgerow losses in association with Sizewell C and other projects in East Suffolk, and Sea Link is further compounding these losses, even if in much smaller quantities.</p>	<p>The loss of trees and hedgerows from other projects combined with the Proposed Project is noted. The EIA has assessed the cumulative environmental effects of any vegetation loss as part of the inter-project cumulative effects assessment for related EIA topics (ecology, landscape and visual, heritage, etc.) associated with the Proposed Project with the environmental effects of other projects within Suffolk in Application Document 6.2.2.13 Part 2 Suffolk Chapter 13 Suffolk Onshore Scheme Inter-Project Effects [APP-060].</p>
A2.6	Operational Phase Impacts – Neutral 5.63-5.66	Tree loss has been minimised and currently reported as reasonable worstcase scenario. Detailed design will be further developed to avoid or minimise impacts to trees.	<p>SCC welcomes the commitment by the Applicant to minimise tree losses and to carry this commitment through to the detailed design stage to further reduce tree losses, where practicable.</p> <p>SCC would welcome, if clearance pruning, as referred to in Paragraph 1.2.11 of the Arboricultural Impact Assessment [APP-294] and removal of trees and hedgerows, which might be required for the site access, would be minimised. In particular, temporary accesses and associated visibility splays should not result in the loss or harm of mature, veteran, or ancient trees. There should be flexibility in the detailed design stage and in the Construction Traffic Management Plan to locate/micro-site site accesses in such a way to avoid such features.</p>	<p>Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] commitment ID A05 commits to the retention of all veteran and ancient trees.</p> <p>The majority of temporary access routes utilise existing access routes used by agricultural machinery. Therefore, no significant impacts to retained trees are expected, which is detailed in Application Document 6.10 Arboricultural Impact Assessment [APP-294 and APP-295].</p> <p>The visual assessment takes into account the reinstatement timescales of land use and vegetation, including hedgerows (Application Document 6.3.2.1.D ES Appendix 2.1.D Visual Amenity Baseline and Assessment [APP-098]). This is explained in response to the Suffolk County Council Local Impact Report in section 13.66 (Application Document 9.35.1 Applicant's Comments on Local Impact Report from Suffolk County Council [REP2-026]).</p>

Refere nce	Matter Summary of Submission	Point Raised	Applicant's Comments	
A2.7	Operational Phase Impacts – Negative: Converter Station Site 5.67-5.71	<p>The local landscape contains a layered vegetation network which creates filtered views. Whilst the Applicant would support a PRoW to the south of the B1119, it has not been considered possible to incorporate this into the DCO as it would require greater rights than are being sought at present over this land. Further details in [REP1A-043].</p>	<p>SCC would like to clarify that the presence of growing tubes and stakes is not considered to dominate views in the landscape, but that this will be what visually will dominate the new hedgerows, which at Year 1 will neither look nor perform as hedgerows, so cannot be considered as a fully re-instated former land-use</p>	<p>SCC considers that because of the openness of the converter station site; the layered vegetation network of the wider surrounding landscape is unable to filter views from nearby visual receptors. The successful screening and filtering of views relies on the visual mitigation provided through the scheme. SCC considers it disappointing the scheme has been developed away from early proposals of open access land and that the Applicant does no longer seem to consider/ advocate for a PRoW along the B1119.</p> <p>Further information on the mitigation planting and effects on visual amenity should be referred to within AP39 contained in Application Document 9.90 Applicant's Response to January Hearing Action Points from Compulsory Acquisition Hearing 1 (CAH1) and Issue Specific Hearing 2 (ISH2) – Deadline 4 submitted at Deadline 4. The Applicant's position around a PRoW along the B1119 is set out at section B4.2 within Application Document 9.36 Applicant's Comments on Other Submissions Received at Deadline 2 [REP3-064]. Whilst the Applicant considers that the existing proposals of the hedgerow and hedgerow tree planting remain proportionate and appropriate, the Applicant recognises the concerns identified by stakeholders and consequently is committed to provide an enhanced belt of planting where there is land available within the widened Order Limits, subject to limitations around existing services and final areas required for maintenance of planting and the drainage ditch along the southern edge of the B1119.</p> <p>The Applicant has agreed to deliver enhancement measures relating to access where the rights already being sought over land would also allow for permissive access to be granted. The locations where this is proposed are the permanent access route from the B1121 to the Saxmundham Converter Station site, and access around the proposed woodland planting around the Saxmundham Converter Station.</p>
A2.8	Operational Phase Impacts – Negative: River Fromus Crossing 5.72-5.77	<p>The Applicant considers that there is a justifiable need for the bridge across the River Fromus to be permanent.</p>	<p>SCC considers, given the long-term significant adverse effects, that the proposed permanent access route via a permanent bridge over the River Fromus is an unnecessary and disproportionate approach. SCC's preference is for an alternative route to be implemented such as by using the consented Sizewell Link Road, as detailed in [REP1-130] such as paras 11.222 to 11.229 and [RR-5209] such as paras 3 to 9.</p> <p>If all reasonable alternative access routes are ruled out to the satisfaction of the ExA, then the bridge over the River Fromus should be made temporary to minimise identified significant adverse effects as required by the mitigation hierarchy. This approach can be facilitated by the forward deployment of Transformers and other equipment.</p> <p>The reasoning given by the Applicant lacks detail and does not justify the Applicant's position in SCC's view. The reasons given by the Applicant are dealt with in turn.</p>	<p>The matters of alternative accesses considered for the Saxmundham Converter Station site are set out in detail in previous submissions into the Examination including the Applicant's response to Suffolk County Council relevant representations, presented in Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014], and in application documents including the Application Document 8.1 Corridor Preliminary Routing and Substation Siting Study (CPRSS) [APP-368] and Application Document 8.2 Options Selection and Design Evolution Report [APP-369]. Alternative accesses were robustly considered, consulted on, and backchecked in light of feedback and emerging assessment findings.</p> <p>The Applicant disagrees with the SCC view that the proposed access into the Saxmundham Converter Station site is disproportionate. The design approach has been robustly considered and discussed with stakeholders including SCC, ESC and an independent design panel for a substantial period of time, and alternatives robustly considered.</p> <p>There are many reasons why the access needs to be permanent through the construction and operation stages.</p>

Refere nce	Matter	Summary of Submission	Point Raised	Applicant's Comments
			<p>The Applicant claims that a permanent bridge is required on account of the need for operational and maintenance traffic to avoid Saxmundham and Leiston. However, the Applicant states in [APP-054] that the level of this traffic is negligible to the extent that it was decided that it could be scoped out of the assessment. Paragraph 7.9.82 details the expected traffic as follows:</p> <p><i>During the operational and maintenance phase, the Suffolk Onshore Scheme will be manned by two operatives across the site (associated with the operation of the proposed Saxmundham Converter Station and Friston Substation), resulting in up to four daily car/LGV trips. There will also be additional infrequent trips associated with monthly or annual maintenance/inspections or repairs when required. Staff vehicles and those used for maintenance are primarily expected to be pickup trucks and vans, with HGVs accessing the site only rarely for the replacement of equipment. Therefore, due to the low level of trips likely to be generated, it has been agreed to scope out operational phase transport effects from the EIA (see Section 7.3).</i></p> <p>The avoidance of impacts caused by four daily car/LGV trips in addition to some infrequent trips can hardly be said to require a permanent bridge which contributes to significant adverse effects.</p> <p>SCC is not aware of AILs being identified as required for maintenance works. Detail has not been provided to date on how the movement of such loads would be assessed and mitigated.</p> <p>SCC does not consider the potential scenario of a transformer needing to be replaced to justify a permanent bridge. The reintroduction of a temporary bridge would, according to the Applicant, require "significant additional cost and impact." If a mitigation measure is necessary to make a proposal acceptable in planning terms, concerns around cost does not simply render the measure unnecessary.</p> <p>Moreover, no detail to evidence the Applicant's claim is provided in terms of the comparative financial feasibility of the temporary bridge so the point cannot yet be considered to provide any weight in supporting the Applicant's position. Regarding the supposed significant impact forecast by the Applicant, no details of these impacts are provided, nor has the option been assessed. As such, this point similarly cannot be provided any weight against the temporary bridge</p>	<p>Operationally, the access would be required throughout the life of the converter station for the day-to-day traffic, but also for the various future larger-scale maintenance and replacement works that may require larger vehicles, HGVs and possibly AILs. Planning maintenance and undertaking any emergency activity during the operational stage has fewer complications and risks if there is a dedicated and purpose-built access into the site, removing the need to consider the logistics of bringing large plant through Saxmundham or the other villages. The access will also be required for the decommissioning stage.</p> <p>The Saxmundham Converter Station will be a critical part of the high voltage transmission network, and to develop a converter station without a functional and permanent operational access capable of accommodating all traffic would not be a logical approach to a major infrastructure project. It would require the access to be reinstated at indeterminate points throughout the operation of the converter station site, with associated cost to consumers, complexity, environmental impacts and risk. Furthermore, in a scenario where there was a fault requiring the access to be reinstated to facilitate necessary AIL movement to allow repair, the timescale of at least 3 months to reinstate a temporary bridge would severely compromise the Applicant's ability to swiftly enact such repair works and for the Applicant to comply with its licence requirements for the Security and Quality of Supply Standard (SQSS).</p> <p>The permanent B1121/Fromus crossing access also represents an integrated and coordinated construction and operational access with the NGV LionLink project.</p> <p>From a constructability perspective, the bridge could not be decommissioned in its entirety in any case, due to the need to retain the abutments in order to facilitate future reinstatement of the bridge as necessary. If the abutments were removed (notwithstanding the cost, complexity, and environmental impacts of doing this), the bridge could not easily be reinstated in the same place due to the buried foundations and piles that could not be removed.</p> <p>Finally, and importantly, from a design and environmental perspective a permanent bridge crossing introduces opportunities to introduce and embed a suite of architectural and design-led treatments, alongside long-term mitigation strategies, that would not be available for a temporary structure. These opportunities have been and continue to be comprehensively and robustly explored by the Applicant, in discussions with stakeholders including SCC, ESC and in independent design panel. The emerging concepts are set out in Application Document 7.11.1 Design Approach Document – Suffolk [APP-364], with a requirement being added to the draft DCO Requirement 3 to provide further reassurance on the design of the bridge (see Appendix C to Application Document 9.90: Applicant's Response to January Hearing Action Points from Compulsory Acquisition Hearing 1 (CAH1) and Issue Specific Hearing 2 (ISH2)).</p> <p>A permissive access along this access from the B1121 into the PROW network closer to the converter station is also being proposed and discussed with SCC, which would provide an in-perpetuity community benefit.</p>

Refere nce	Matter Summary of Submission	Point Raised	Applicant's Comments
A2.9	Overarchin g Principles 5.89-5.90	<p>The Key Design Principles are secured and would be discharged as set out in Requirement 3. The Outline Design Principles and Project Level Design Principles are not secured and are not written to be so.</p> <p>Document 7.12.1 Design Principles – Suffolk [APP-366] states in paragraphs 1.3.8 and 1.3.9 that only the Key Design Principles in Table 3.1 and Table 4.1 are secured and the rest of the document is provided for guidance only.</p> <p>Table 3.1 presents design principle for the converter station and Table 4.1 for the substation at Friston.</p> <p>For the remainder of the project area the Applicant proposes no secured design principles. SCC considers this unacceptable.</p>	<p>It should also be noted in the context of the SCC position that the Environmental Statement does not conclude significant effects arising from the Fromus bridge on heritage receptors after the mitigation has established after Year 15 in any case. Similarly, significant effects on landscape and visual receptors are not driven by the Fromus bridge in isolation but instead by the Saxmundham Converter Station that would break the skyline above it; the effects would be significant either way. In this context, the suggestion to remove the bridge, which is essential for the main access to the site to reduce these impacts is entirely disproportional.</p> <p>In summary, the necessary and appropriate approach is to develop a functional, purpose-built access into the Saxmundham Converter Station site once, which can reflect and embed the good design principles that have been discussed with stakeholders throughout the development stages of the Proposed Project, and maintain this over the life of the asset.</p>

Refere nce	Matter	Summary of Submission	Point Raised	Applicant's Comments
A2.10	Project Level Design Principles 5/91-5.96	The Applicant agrees with the requirement to reinstate planting and the mitigation of landscape and visual effects (comments on PL.2 and PL.6) but given that the Project Level Design Principles are not secured, this is not the place to secure this measure. Instead, these requirements are secured within the oLEMP (Application Document 7.5.7.1 (B) Outline Landscape and Ecological	SCC does not understand, why the Overarching and the Project Level Design Principles should not be secured within the DCO. (in particular, OA.4 Mitigation Hierarchy, OA.6 Coordination (Suffolk only), PL.2 Landscape Character, PL.3 Visual Amenity (which should include mitigative planting), etc.) SCC considers that a number of the Key Design Principles (as well as other design principles) remain vague as well as caveated and that they should be amended to provide greater certainty regarding what the Applicant would do, if consent was granted, not what the Applicant might do. Please also see, paragraphs 5.89- 5.104 SCC LIR [REP1-130].	Requirement 3 in the draft DCO has been expanded to clarify how the design approaches to the converter stations, substations, and the Fromus river crossing will be secured. The updated Requirement is submitted at Deadline 4 (see Appendix C to Application Document 9.90: Applicant's Response to January Hearing Action Points from Compulsory Acquisition Hearing 1 (CAH1) and Issue Specific Hearing 2 (ISH2)). Regarding the Saxmundham Converter Station and the Kent Converter Station and Substation, and having considered in the context of ongoing discussions, the Applicant is comfortable with the relevant planning authority (ESC) having control over the external colour and surface finish of the converter stations. This reflects the approach taken and deemed acceptable by the SoS in The National Grid (Yorkshire Green Energy Enablement Project) Development Consent Order 2024. The details of layout, scale and lighting must remain at the discretion of the Applicant (given their relationship to the Critical Design Constraints set out in Application Document 7.12.1 Design Principles – Suffolk [APP-366]), and the Requirement wording reflects this, although the ability of the relevant planning authority to confirm adherence to Key Design Principles set out in the Converter Station Design Principles set out in Application Document 7.12.1 Design Principles – Suffolk [APP-366] is retained. Regarding Friston substation, Requirement 3 in the draft DCO has also been updated to secure the design details that have been developed and submitted in documents to discharge requirement 12 on the SPR EA2 DCO (see Appendix C to Application Document 9.90: Applicant's Response to January Hearing Action Points from Compulsory Acquisition Hearing 1 (CAH1) and Issue Specific Hearing 2 (ISH2)). This ensures consistency and removes any ambiguity. However, it should be noted that this Requirement has not been discharged and SPR retains the ability to change these details in the future, so flexibility must be retained in the Sea Link DCO to update these details in the future for this consistency to be maintained. Regarding the Fromus river crossing, Requirement 3 has been updated to incorporate the minimum size parameters requested by the Environment Agency to ensure compliance with the Water Framework Directive. As with the converter station element of the Requirement (above), the ability of the relevant local planning authority to control the external colour and surface finish has also been introduced. Furthermore, commitments previously set out in the REAC (LV14) have been adapted to be suitable for inclusion in the Requirement and incorporated.
			SCC could not find clear references in the document superseding AS-059: 7.5.7.1 (B) Outline Landscape and Ecological Management Plan - Suffolk (Version 2, change request) (Clean) [CR1-045] and would ask the applicant to give greater guidance as to where these principles are reflected.	The Project Level Design Principles provide guidance and narrative to the design of the Suffolk Onshore Scheme and have been used to inform the Converter Station Design Principles in Table 3.1 which are secured by Requirement 3 of Application Document 3.1 (F) Draft Development Consent Order [REP3-006] . PL.6 specifically relates to maintenance, servicing, emergency access and parking which are contained within the converter station compound. The outline landscape design contained in Application Document 7.5.7.1 (C) Outline Landscape and Ecological Management Plan - Suffolk submitted at Deadline 4 which is secured by Requirement 6 of the Application Document 3.1 (F) Draft Development Consent Order [REP3-006] provides substantial mitigation for the entire

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
		Management Plan - Suffolk (Clean) [AS-059].		converter station compound area. Furthermore, the key design principles secured in Table 3.1 include provision for consideration of the built form and integration of them within the landscape.
A2.11	Converter Station Design Principles Suffolk 5.97-5.102	The Applicant considers that 'Potential Associated Activities' are correctly categorised.	SCC considers that the Potential Associated Activities explain how the Applicant would demonstrate adherence to the Key Principles. In SCC's view these activities are therefore an integral part of the principle and should be secured as part of the principle. The wording of the activities should be tightened up to create greater certainty.	<p>The 'Potential Associated Activities' are an informative summary of the ways that the Applicant may demonstrate adherence to each relevant Key Design Principle. Securing these activities and deliverables is not necessary and specifying these would be inappropriate given that, as the detailed designs emerge at later stages of the Proposed Project, there may be alternative and more suitable ways of approaching each design principle. It is not standard practice to dictate the way in which documents should be structured and presented to discharge requirements. In volunteering suggestions on how documents might be presented, the Applicant has provided more information than would normally be provided at this stage, evidencing the depth of thinking, consultation and work that has gone into the design of the Proposed Project.</p> <p>Nonetheless, it is anticipated that the relevant planning authority would have the opportunity to work with the Applicant in the context of Requirement 3 to discuss and agree how best to demonstrate compliance with the Key Design Principles, and indeed the planning authority would be the discharging authority for this Requirement.</p>
A2.12	Document 6.2.2.1: Environmental Statement Part 2 Chapter 1 Landscape and Visual [APP048] 5.112-5.115	<p>The oLEMP (Application Document 7.5.7.1 (B) Outline Landscape and Ecological Management Plan - Suffolk (Clean) [AS059]) commits to reinstatement of vegetation removal. Whilst trees that have been removed above the cable alignment cannot be replaced in situ, during the detailed design process tree planting within adjacent hedgerows where the Order Limits allow would be reviewed and included in the final Landscape and Ecological Management Plan where possible and appropriate.</p> <p>Section 2.4.16 of 7.4.8 Draft Statement of Common Ground East Suffolk Council and Suffolk County Council [APP-329] should be referred to with regard to the Applicant's position in relation to compensation for residual landscape and visual effects.</p>	SCC considers that the Applicant's approach to tree replacement and the potential need for compensation measures is too non-committal.	<p>The Applicant considers that the commitments secured in both Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] and Application Document 7.5.7.1 (C) Outline Landscape and Ecological Management Plan - Suffolk submitted at Deadline 4 provide appropriate and adequate provision for tree replacement and reinstatement of the cable corridors. The commitments are firm and secured; the Applicant disagrees that the approach has been non-committal.</p>
A2.13	Document 6.10: Arboricultural Impact Assessment Part 1 of 2	The final extent of pruning will be detailed within an Arboricultural Method Statement which is secured via Requirement 8 of the 3.1 draft Development Consent Order.	<p>SCC welcomes the inclusion of Requirement 8 into the draft Development Consent Order.</p> <p>However, there appears to be currently no provision within the draft DCO to schedule important hedgerows that are affected by the scheme. SCC considers that this should be addressed.</p>	The Applicant notes the response provided at A2.17 below. The Applicant will consider further whether it would be appropriate to include a schedule within the draft DCO.

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
		[APP294] 5.121-125		
A2.14	Document 2.12: Trees and Important Hedgerows to be Removed or Managed Plans [APP-036] 5.126-5.127	Important Hedgerows are assessed in the Suffolk Ecology and Biodiversity Chapter and there are measures in the Register of Environmental Actions and Commitments relating to them, notably measure B31. Important Hedgerows are mapped in ES Figure 6.4.2.2.A ES Figures Suffolk Phase 1 Habitat Survey Report (including Badgers and Important Hedgerows) [AS-028].	The query raised by SCC was in relation to non-important hedgerows, which has not been addressed in the Applicant's response.	Non-important hedgerows are identified on Application Document 2.12 Trees and Important Hedgerows to be Removed or Managed Plans [CR1-023] as 'existing tree, group, woodland, or hedge to be retained/managed/removed'.
A2.15	Document 7.5.7.1 Outline Landscape and Ecological Management Plan – Suffolk [AS-059] 5.129-5.143	Notes concern around wording within the oCoCP and REAC and will review the request to changes suggested by SCC. Applicant does not believe that the requirement of 3:1 replacement planting has been raised previously. Total area of canopy recorded by tree survey is 709,821m ² and extent of canopy loss is 47,903m ² , therefore total loss quotes to approximately 6.74%.	<p>The 3:1 ratio for replacement of mature trees which are lost to development is commonly used at SCC. This principle has also been recently agreed for the National Grid project Norwich to Tilbury. Given the loss of ecosystem services provided by a mature tree and the lengthy time lag before replacement trees would offer comparable benefits, this seems like a reasonable, if not conservative approach.</p> <p>While SCC welcomes the potential increase in canopy cover and woodland habitat the project offers, the gain in area is only one aspect. The timeline and targets for function, quality, and distinctiveness of the new woodland in comparison to the established woodland that may have been lost would also need to be clearly set out, in the Habitat Monitoring and Management Plan (HMMP).</p> <p>SCC considers that it is necessary to also address tree losses in numbers and not solely in canopy cover area, particularly for mature trees. Especially outside woodlands, knowing how many trees were lost and how many were planted would aid monitoring and auditing.</p>	<p>The Applicant has responded to the point about a replacement planting ratio of 3:1 in Application Document 9.35.1 Applicant's Comments on Local Impact Report from Suffolk County Council [REP2-026]. Table 6.1 in Application Document 6.10 Arboricultural Impact Assessment [APP-294] quantifies the extent of tree loss for the Suffolk Onshore Scheme.</p> <p>The quantity of new tree planting cannot be confirmed at this stage however, the final extent of tree planting will be included within the detailed Landscape and Ecology Management Plan (LEMP), produced at the detailed design stage and discharged by the relevant planning authority under Requirement 6 of the Application Document 3.1 (F) Draft Development Consent Order [REP3-006]. Regardless the Applicant considers that the extent of tree planting detailed within the outline LEMP (Application Document 7.5.7.1 (C) Outline Landscape and Ecological Management Plan - Suffolk submitted at Deadline 4) which equates to approximately 214,931 m² will exceed a 3:1 replacement ratio for individual mature trees lost. As such the Applicant agrees to the 3:1 ratio for replacement of mature trees which are lost to development</p>
A2.16	Landscape and Ecological Proposals 5.146-5.148	The Proposed Project will not undermine the effectiveness of the landscape mitigation set out for the consented EA1N and EA2 DCOs.	Further comment by SCC must be reserved until the landscape proposals by SPR are published and the landscape proposals for the proposed scheme, at Friston and at Saxmundham, are submitted as separate documents.	The Applicant's position on the landscape proposals at Friston should be referred to within AP50 contained in Application Document 9.90 Applicant's Response to January Hearing Action Points from Compulsory Acquisition Hearing 1 (CAH1) and Issue Specific Hearing 2 (ISH2) – Deadline 4 submitted at Deadline 4.
A2.17	Draft Development Consent Order ("dDCO") [AS087] 5.166	The relevant Important Hedgerows are shown on the Trees and Hedgerows to be Removed or Managed Plans, rather than in a schedule within the draft DCO.	SCC does not consider this sufficient and requests that a schedule is included in the DCO. A schedule in the DCO would be preferable and is precedent for similar projects such as within Schedule 11 of EA2's DCO. This would avoid confusion and make the DCO more precise as the plans cited by the Applicant do not include hedgerows categorised as non-important.	The Applicant will consider this drafting matter further but does note that the approach taken to the current drafting is a well-precedented approach. Non-important hedgerows are identified on Application Document 2.12 Trees and Important Hedgerows to be Removed or Managed Plans [CR1-023] as 'existing tree, group, woodland, or hedge to be retained/managed/removed'.

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
A2.18	Document 7.5.3: Outline Onshore Construction Environmental Management Plan ("CEMP") [AS-127] 5.168-5.174	Adaptive management measures are committed to in the oLEMP, the detail of which will be developed further post determination in the full LEMP	SCC considers that the measures presented in the REAC and CoCP need to align and be cross referenced with the oLEMP and full LEMP, and that discrepancies need to be addressed.	The detailed LEMP will cross refer to Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] and Application Document 9.83 Outline Code of Construction Practice [REP3-076] which will ensure that all updates to commitments in the REAC are consistent with the detailed LEMP.
A2.19	Management periods 5.158	Five years of aftercare for the reinstatement planting is considered appropriate by the applicant. This planting would be managed for the lifetime of the project.	SCC considers a 5-year aftercare period for woodland features as insufficient. This aftercare period needs to be at least 10-15 years, given the time it takes for trees to reach maturity.	The five-year aftercare period relates to the areas of reinstatement along the cable corridors and temporary compounds (outside the Saxmundham Converter Station site area) which would not include woodland planting. All areas of woodland planting included in the Application Document 7.5.7.1 (C) Outline Landscape and Ecological Management Plan - Suffolk submitted at Deadline 4 would be maintained for the lifetime of the asset.
A2.20	Implementation of native planting 5.161	Hedgerows will be maintained at a height of 2.5-3.5m	SCC Ecology questions the need to maintain the height of the hedgerows to the stated dimensions (unless it is for visibility/access purposes).	The Applicant will consider deletion of specific reference to dimensions as a matter for the detailed LEMP post-DCO consent.

Table A3 – 4.1 Applicant's Comments on Chapter 6: Ecology and Biodiversity

A3.1	Construction phase impacts – negative 6.18	Prior to any works being undertaken on the bridge, a bat roost assessment of the bridge will be undertaken to assess the presence/likely absence of bats in the bridge.	The areas of continuous vegetation on the embankments either side of the line provide excellent migration and foraging opportunities for bats. If this vegetation is to be anyway impacted by works to the bridge, the impacts on bats resulting from any vegetation loss will need to be assessed in terms of impacts on foraging/migrating bats. SCC Ecology are keen to see bat activity surveys carried out in this area (if they have not been already)	This comment is noted by the Applicant.
Noted A3.2	Construction phase impacts – negative. 6.18	The scrub on the railway embankment is suitable for badgers. Further surveys will be required prior to works commencing.	SCC Ecology welcomes the commitment to further badger surveys in the area surrounding Benhall Bridge prior to any works taking place at this location.	This comment is noted by the Applicant.
A3.3	Decommissioning phase impacts. 6.25	The applicant can confirm there will be no works taking place on the vegetated shingle habitat.	SCC Ecology makes note of this comment.	This comment is noted by the Applicant.
A3.4	Acid grassland restoration	The acid grassland restoration and enhancement will be maintained for 10 years as it is mitigation for the	SCC Ecology still query why this area of grassland will be maintained for only 10 years and not in perpetuity in line with the other areas of habitat that will be delivered in the BNG	The acid grassland enhancement is not being counted towards BNG requirements for the Proposed Project. A ten-year period is considered

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
	and enhancement 6.36	temporary loss of acid grassland. This area should have returned to a suitable condition before the ten years of maintenance has ended.	commitments from the applicant. What will happen to this area of acid grassland should the condition start to deteriorate once the ten-year maintenance period has ended?	appropriate as the impact the acid grassland enhancement addresses is a temporary impact of the Proposed Project.
A3.5	Environmental Statement – Nontechnical summary 6.53	With regard to the record of a part-built dormouse nest being recorded close to Benhall Bridge, the applicant has identified the need for further dormouse surveys in this area prior to any vegetation clearance works happening.	SCC Ecology welcomes this approach, particularly as there is another record of a dormouse nest from this area. This record is 8- 10 years old but was verified by the People's Trust for Endangered Species (PTES).	This comment is noted by the Applicant.
A3.6	Environmental Statement Appendix 2.2B - Overwintering Bird Survey Report 6.62	The last wintering bird survey was undertaken in 2023/2024, and the applicant identifies the need for further surveys prior to any pre-construction works taking place.	SCC Ecology welcomes this commitment, particularly with regard to potential impacts on overwintering birds at the RSPB North Warren site which is close to the landfall site.	This comment is noted by the Applicant. However, since the North Warren RSPB Reserve is being treated as a sensitive receptor, the Applicant does not consider that updated information regarding the number and distribution of wintering birds within the Reserve is required, particularly since RSPB have good data for their Reserve.

Table A4 – 5.1 Applicant's Comments on Chapter 7: Cultural Heritage

A4.1	General comments regarding 'Applicant's comments on Local Impact Report.'	Updated OWSI will be submitted after a final review from SCCAS and Historic England before the end of the examination period.	<p>SCCAS are pleased that the applicant has committed to updating the Outline Onshore OWSI - Suffolk [APP-343] in line with the comments set out within the Suffolk County Council Local Impact Report (REP1-130) paragraphs 7.83-7.132.</p> <p>SCCAS are also pleased that the applicant has noted the advice which was set out within the Local Impact Report (REP1-130) relating to the need for the applicant to update DCO Requirement Wording 14 and the Part 4 Supplemental Powers, and that they have stated that they will consider this advice when drafting the next iteration of the DCO document.</p> <p>Detailed comments regarding suggested appropriate wording can be found in the Suffolk County Council Local Impact Report (REP1- 130) in section 7.138-7.144. The suggested wording is in line with the wording of the approved Sizewell C DCO, which is currently being implemented with great success with regards to both securing appropriate archaeological mitigation whilst meeting project delivery requirements.</p>	This comment is noted by the Applicant.
------	---	---	--	---

Table A5 – 6.1 Applicant's Comments on Chapter 8: Water Environment

A5.1	Document 6.8: Flood Risk	The applicant noted LLFA comments regarding infiltration and will work with SPR to review recent infiltration testing.	The LLFA believe that the worst-case scenario of impermeable area should be taken. Without infiltration testing and a detailed construction cross section, the permeability of the chipped surface cannot be determined.
------	--------------------------	--	--

The Applicant at Deadline 3 submitted further information to the examination in the form of **Application Document 9.17.1 Suffolk Drainage Strategy [REP3-060]**.

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
	Assessment [APP-292]		SCC acknowledges that the Applicant will provide a SuDS solution at the construction stage, but the LLFA will require detail of the proposed temporary drainage systems to be approved prior to construction.	Further detail regarding the temporary drainage systems that will serve the construction of the Proposed Project will be provided, as detailed in commitment W14 in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] . This commitment, which is secured by Requirement 6 of Application Document 3.1 (F) Draft Development Consent Order [REP3-006] , requires the contractor shall develop a Drainage Management Plan and that this must be submitted to the local planning authority for approval prior to construction works for the Proposed Project commencing. The plan shall demonstrate how the contractor would manage surface water runoff across the worksite, including details of how offsite impacts would be managed and mitigated.
A5.2	8.21 Operational Phase Impacts - Negative	Operation of the proposed substation would not increase surface water flood risk to downstream areas including Friston.	SCC acknowledges the Applicant's assessments. However, detail at this stage is indicative and an approved surface water drainage management plan for the entire Suffolk Onshore Scheme must be submitted to and approved by the LLFA prior to commencement to ensure the Applicant's claim that surface water flood risk does not increase. Any areas which crossover with SPR consented DCOs, Sea Link shall mimic that approach – i.e. Kiln Lane substation. SPR have now submitted their operational drainage management plan for the substation site for the approval of the LLFA.	Further information on operational drainage proposals is provided in Application Document 9.17.1 Suffolk Drainage Strategy [REP3-060] . Further, commitment W11 in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] secures that surface water drainage from permanent above ground infrastructure would be managed and treated using SuDS in accordance with policy and guidance requirements of the relevant Lead Local Flood Authorities to include allowances for climate change in accordance with current (May 2022) Environment Agency guidelines, and that these SuDS would be maintained over the lifetime of the Proposed Project. The Applicant continues to engage with SPR to co-ordinate drainage proposals.
A5.3	8.25 - Decommissioning Phase Impacts - Negative	Decommissioning of the project would be undertaken in accordance with good practice at the time of decommissioning.	Detail must be provided prior to decommissioning of surface water drainage management to prevent flooding. Will have to provide this prior to decommissioning.	Decommissioning of the Proposed Project would be subject to controls as secured by Requirement 13 of Application Document 3.1 (F) Draft Development Consent Order [REP3-006] which requires that a written scheme of decommissioning must be submitted for approval by the relevant planning authority, in consultation with the Environment Agency, at least six months prior to any decommissioning works.
A5.4	8.26 Infiltration potential	SPR and the Applicant are liaising extensively on the design, layout, and drainage of the Friston site. The Applicant is not intending to take a different approach to drainage of the site to that proposed by SPR.	The Council's representation was made regarding the converter station site. However, the Applicant answered in relation to the substation site. Therefore, the Council's point regarding the converter station site remains unanswered. SCC continues to recommend that the Applicant explore opportunities for infiltration for the Converter Station at the earliest opportunity.	Further details regarding drainage proposals for the Saxmundham Converter Station site are included within Application Document 9.17.1 Suffolk Drainage Strategy [REP3-060] .
A5.5	8.28 Haul Road drainage design	A response to LLFA comments is provided in Table 2.1.6 of Application Document 9.34.1 Applicant's Detailed Responses to Relevant Representations identified by the ExA [REP1A-043].	SCC considers this matter addressed by the Applicant in their cited response.	This is noted by the Applicant and welcomed.
A5.6	8.29 Avoiding pluvial flood risk	A response to LLFA comments is provided in Table 2.1.6 of Application Document 9.34.1 Applicant's Detailed Responses to Relevant Representations identified by the ExA [REP1A-043].	Whilst the new national flood maps have been used for pluvial flood risk, they only appear show the predicted flood risk now and have not shown the predicted pluvial flood maps with climate change applied.	The maps with climate change applied show that within the Order Limits of the Suffolk Onshore Scheme the extents of surface water flood risk areas are very similar to those representing present day. The principal difference is that in some of these extents the risk profile changes, with areas currently at medium risk changing to high risk in the climate change scenario. The Proposed Project's interactions with high and medium flood

Refere nce	Matter	Summary of Submission	Point Raised	Applicant's Comments
A5.7	8.30 Managing intercepted flows	A response to LLFA comments is provided in Table 2.1.6 of Application Document 9.34.1 Applicant's Detailed Responses to Relevant Representations identified by the ExA [REP1A-043].	The document cited by the Applicant does not appear to address this point. The text appears as RR 51 in that document, but the Applicant's response only appears to address RR 50. Therefore, this point has not been addressed by the Applicant	risk areas are in the vast majority localised, construction stage, temporary works, for which mitigations and controls are secured through commitments within Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] to ensure no increase in surface water flood risk as a consequence of the Proposed Project's construction and operation. RR 51 notes that where works intercept overland flow paths, consideration must be given to how these flows will be managed, to ensure there is no increase in flood risk. For the construction stage of the Proposed Project this matter will be addressed in preparation of the Plans secured by commitments W14 and W15 of Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] . Following post construction reinstatement, there is a low risk of intercepting overland flow paths along the buried cable corridors.
A5.8	8.31 Friston sensitivity	A response to LLFA comments is provided in Table 2.1.6 of Application Document 9.34.1 Applicant's Detailed Responses to Relevant Representations identified by the ExA [REP1A-043].	The Flood Risk Assessment uses the latest available data which adequately reflects the Flood Risk sensitivity of the Friston area, and the assessment clearly demonstrates that there will be no increase in surface water flood risk as a result of the proposed development. Therefore, SCC considers this point to be addressed.	This is noted by the Applicant and welcomed.
A5.9	8.32 Substation flood risk concerns	SPR and the Applicant are liaising extensively on the design, layout, and drainage of the Friston substation site. The Sea Link Order Limits are wide at the Friston site and contain significant areas that could be utilised for drainage and mitigation. Drainage works were not previously included as an individual 'work' in the original application so were not shown on the Works Plans. In part to clarify the areas for works at Friston, the Works Plans have been updated (see Application Document 2.5.1 B (version 2) Works Plans – Suffolk [CR1-007] and drainage is now presented as Work No. 13. This update should provide reassurance over the extensive area available for the implementation of drainage at the site. This provides ample space for drainage of Friston Substation and all associated works should these works be constructed under the Sea Link application.	Point addressed. Having reviewed the present status of the Application, based on the information available, there appears to be sufficient space in the order limits for drainage mitigation around the Kiln Lane substation	This is noted by the Applicant and welcomed.
A5.10	8.35 Missing		There is no response to this. SCC continues to consider that several ordinary watercourses are missing from the plans and that these should be included.	The Applicant acknowledges that some, more minor, field drains and other ordinary watercourses are not included on the plans that are presented within the Flood Risk Assessment. However, where the

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
		watercourses		Proposed Project would interact with any watercourse (as detailed in Application Document 6.3.1.4.A ES Appendix 1.4.A Crossings Schedules [APP-089]), these watercourses will be subject to site surveys and mapping to inform the detailed design of the Proposed Project.
A5.11	8.37 Drainage sizing clarity	Further information regarding the methodology for sizing drainage features (permanent and temporary), with supporting calculations will be provided by the Applicant.	SCC welcomes that the Applicant will provide this information. SCC expects that this should be provided during the examination with sufficient time for the Council to review.	This information is provided in Application Document 9.17.1 Suffolk Drainage Strategy [REP3-060] .
A5.12	8.40 Plans and Drawings	A response to LLFA comments is provided in Table 2.1.6 of Application Document 9.34.1 Applicant's Detailed Responses to Relevant Representations identified by the ExA [REP1A-043].	SCC understands that the EA1N and EA2 projects do not need to go up to this culvert which means SCC is satisfied for Sea Link not to do so. Should full infiltration be feasible then use of the culvert would not be necessary.	This is noted by the Applicant and welcomed.
A5.13	8.41 Document 2.11: Water Bodies in the River Basin Plans [APP-035]	Application Document 2.11 Water Bodies in the River Basin Management Plans (Version 2, change request) [CR1-022] is intended to illustrate water bodies that are designated and monitored under the Water Framework Directive. The Friston river is not such a water body and therefore is not included in the plan.	Friston river is designated as a main river and is managed by the EA as such. This should be recognised and clarified that it is not considered to be an ordinary watercourse.	Noted. The Applicant acknowledges that this watercourse is a designated main river.
A5.14	8.42 Document 2.13: Design and Layout Plans [APP-037]	The typical construction swathes are not location specific which would be required to size the drainage channels for any given return period. The overall construction swathes have been produced with sufficient flexibility to accommodate increased drainage attenuation capacity. Noting that attenuation is primarily provided by attenuation and infiltration ponds provided along the construction corridor as indicated on the Application Document 2.14.1 Indicative General Arrangements Plans – Suffolk [APP-038]	A construction surface water drainage management plan should be produced to include the finalised details.	Commitment W14 in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] secures that the contractor will develop a Drainage Management Plan and that this must be submitted to the local planning authority for approval prior to construction works for the Proposed Project commencing. The plan shall demonstrate how the contractor would manage surface water runoff across the worksite, including details of how offsite impacts would be managed and mitigated.
A5.15	8.43-8.44 Document 2.14.1: Indicative General Arrangeme nt Plans [APP-038]	Further information regarding the methodology for sizing drainage features (permanent and temporary), with supporting calculations will be provided by the Applicant. Outfall locations are provided on the Application Document 2.14.1 Indicative General Arrangement Plans - Suffolk [APP-038], refer to key for	SCC welcomes that the Applicant will provide this information. SCC expects that this should be provided during the examination with sufficient time for the Council to review.	This information is provided in Application Document 9.17.1 Suffolk Drainage Strategy [REP3-060] .

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
		'Proposed drainage – temporary outfall' and 'Proposed drainage – permanent outfall'.		
A5.16	8.53 Document 6.8: Flood Risk Assessment [APP292]	The Applicant agrees that if it is technically possible, the drainage system will infiltrate all runoff from the impermeable areas of the proposed substation. The Applicant is working with SPR to review the recent infiltration testing to confirm the technical feasibility of this option.	8. detail at this stage is indicative and an approved surface water drainage management plan for the entire Suffolk Onshore Scheme must be submitted to and approved by the LLFA prior to commencement to ensure the Applicant's claim that surface water flood risk does not increase. Any areas which crossover with SPR consented DCOs, Sea Link shall mimic that approach – i.e. Kiln Lane substation. SPR have now submitted their operational drainage management plan for the substation site for the approval of the LLFA	Noted. This is secured by commitments W14 and W11 in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] . The Applicant continues to engage with SPR to co-ordinate drainage proposals.
A5.17	8.60 Document 6.8: Flood Risk Assessment [APP-292]	50% of the Converter and Substation footprints have been considered as impermeable as they will be formed of buildings and roads, the granular and chippings surface of the rest of the site is considered permeable. Runoff from these permeable areas will match or improve on existing green field runoff rates due to the attenuation of the runoff within the compound buildup.	Impermeable granular and chippings surface is not permeable as claimed by the Applicant. Therefore, the Applicant's claim that 50% of the footprints of the sites is permeable is not accurate. Not addressed	The surfacing utilised will be permeable granular material, with a freely drainage chippings layer as the surface. This surfacing approach has been used country wide to provide freely draining stable surfacing for substations and convertor stations. The Applicant has produced the Application Document 9.17.1 Suffolk Drainage Strategy [REP3-060] which provides further detail on this subject.
A5.18	8.68 Document 6.2.1.4: ES Part 1 Introduction Chapter 4 Description of the Proposed Project [AS-093]	The Applicant requests clarity on what other documents this should be included in and for what purpose	The documents referred to by SCC would relate to soils, construction earthworks, material handling, stockpile handling, construction surface water management drainage, pollution, and other relevant control documents. This would include the Soil Management Plan, Materials and Waste management plan and others such as the Construction Environmental Management Plan.	This point raised was in regard paragraph 4.6.31 of Application Document 6.2.1.4 (C) Part 1 Introduction Chapter 4 Description of the Proposed Project [AS-093] which stated " <i>Temporary construction compounds would be connected to water supplies where reasonable connections can be made to support welfare facilities. If reasonable connections are not available, then water would be tankered to the construction compound. Water for construction activities such as concrete batching or trenchless drilling would be tankered to the construction compound. The location of tankered supplies would be agreed with the relevant authorities once a contractor supplier has been appointed for the Proposed Project.</i> " As this paragraph relates to the temporary supply of water for construction compounds and welfare facilities, this does not relate to either the Soil Management Plan or the Materials and Waste Management Plan.
A5.19	8.80 Document 6.4.2.4: ES Part 2 Suffolk Chapter 4 Water Environment – Figures [APP231]: Surface Water Flood Risk	Excerpts of the flood mapping produced by the BMT study are provided within Application Document 6.9 Flood Risk Assessment [APP-292], which also present surface water mapping based on NaFRA2 for the construction and operational stages of the Project.	The referenced items appear not to have been included with the FRA. The Applicant must also include the future 2040-2060 epoch pluvial flood maps.	Plate 4.1 within Application Document 6.8 Flood Risk Assessment [APP-292] presents the flood mapping from the BMT study and the NaFRA2 surface water maps are provided in Appendix A of that report.

Refere nce	Matter	Summary of Submission	Point Raised	Applicant's Comments
		Suffolk Onshore Scheme Figure 6.4.2.4.3		
A5.20	8.85 Document 6.4.2.4: ES Part 2 Suffolk Chapter 4 Water Environment – Figures [APP231]: Surface Water Flood Risk Suffolk Onshore Scheme Figure 6.4.2.4.3	More detailed plans are provided in Application Document 6.9 Flood Risk Assessment [APP-292], which present surface water mapping based on NaFRA2 for the construction and operational stages of the Project.	The proposed red line boundary of the application has areas at risk of surface water flooding. Whilst the applicant has shown that the developed areas are to be in low-risk surface water flood areas, it is noted that the Applicant has applied the sequential/exception test.	The Applicant has applied the sequential approach to siting development within the Order Limits, and the exception test, as not all areas at high risk of flooding (from rivers and the sea) have been avoided. The Flood Risk Assessment included as Application Document 6.8 Flood Risk Assessment [APP-292] demonstrates how the exception test has been passed.
A5.21	8.88 Document 7.5.3.1: Construction Environmental Management Plan Appendix A Outline Code of Construction Practice [APP341]	As stated in this commitment, the bullet point list of topics is not exhaustive. Correct storage of materials and soils is good practice and commitments to these good practices are secured via measures AS01 and GH05 within Application Document 7.5.3.2 (B) CEMP Appendix B Register of Environmental Actions and Commitments (REAC) [REP1-102].	Resolved, but additional comment - LLFA requires justification for proposed permanent culverts on any non-main river and a plan showing that during the event of blockages the water can flow over the crossing and back into the watercourse without increasing flood risk elsewhere.	Noted. As secured by commitment W01 in Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] any permanent culverts on non-main rivers would be subject to secondary consent from the Lead Local Flood Authorities/Internal Drainage Boards, as applicable. These consent applications would be supported by suitable plans and detailed design information.

Table A6 – 7.1 Applicant's Comments on Chapter 9: Geology and Hydrology

A6.1	Management of minerals – recycling and prevention of waste.	As identified in commitment GG22 in Application Document 7.5.3.2 (B) CEMP Appendix B Register of Environmental Actions and Commitments (REAC) [CR1- 043], a Material and Waste Management Plan will be submitted to and approved by the local planning authority prior to construction as secured by Requirement 6 in the draft DCO. The	<p>The Applicant must ensure minerals are reused where possible and not simply taken off site and treated as waste. Taking minerals offsite and importing unnecessarily would also generate unnecessary additional vehicle movements.</p> <p>The Council also does not see how sterilisation of minerals resources has been minimised. A significant proportion of the Order Limits are within the Minerals Safeguarding Area, and the Council does not see how the Applicant can</p>	<p>The Preliminary Minerals Resource Assessment (Application Document 6.3.2.5.C ES Appendix 2.5.C Preliminary Minerals Resource Assessment [APP-118]) provides an indication of the percentage of the Mineral Consultation Area (MCA) that the entire Order Limits of the Proposed Project potentially impacts (0.1% of the entire MCA in Suffolk). The report then describes that the potential area of the MCA that could be sterilised by the physical footprint of the Proposed Project is a very small proportion of the MCA. The report also describes that the existence, extent and quality (and therefore economic value) of mineral within the MCA has not been proven and is anticipated to be variable. Section 3 of</p>
------	---	--	---	---

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
		commitment specifies that the plan will set out, in an auditable manner, how waste will be reduced, reused, managed, and disposed of in accordance with the waste hierarchy. This will include minerals excavated on site.	<p>consider the affected minerals deposits to not be of economic value. As such, measures should be explored to minimise adverse impacts on minerals deposits.</p> <p>If the project falls into disuse, then land should be restored to previous condition and all pieces of infrastructure removed to ensure future minerals extraction is not compromised.</p> <p>Following the waste hierarchy, the Applicant should seek for any materials to be disposed to be instead reused by other developments through coordination.</p>	<p>the Preliminary Minerals Resource Assessment provides the assessment of effects of the Proposed Project on mineral deposits.</p> <p>As stated in Application Document 6.2.1.4 (D) Part 1 Introduction Chapter 4 Description of the Proposed Project [REP1-003] of the ES, whilst there are currently no plans to decommission the Proposed Project, most elements of the Proposed Project have lifespans of approximately 40 years (with the exception of pylons which have a typical lifespan of up to 80 years). In the event the Proposed Project is decommissioned the infrastructure could be removed and access to the underlying mineral restored.</p>
A7.1	11.91 iv. and 11.208 - 11.209 Lack of breaks in construction with seven days a week working.	The proposed management and mitigation relating to Public Rights of Way is set out within Application Document 7.5.9.1 Outline Public Rights of Way Management Plan – Suffolk [APP-352] which has been submitted in outline form to specify the overarching principles and measures to minimise and mitigate, as far as reasonably practicable, the potential effects of the construction activities associated with the Proposed Project on the surrounding PRoW network. A detailed PRoW Management Plan will be developed in accordance with the outline plan and approved by SCC post consent in accordance with requirement 6 of the draft DCO	<p>SCC has significant concerns regarding the impact of the proposed working hours on public health and wellbeing, as they would leave local communities with little respite from construction related noise, vibration, traffic, and disruption.</p> <p>When considered in association with overlapping NSIPs in the region, there is likely to be a substantial impact on mental health and wellbeing.</p> <p>The additional core working hours (7am – 5pm on Sunday and Bank Holidays) is likely to affect local tourism due to the impacts on the PRoW network and roads used for recreational purposes at times when they are most frequently used.</p>	<p>The Applicant has previously responded on comments relating to the additional core working hours within Table 2.2 Significant Issues and Table 2.9 Traffic and Transport of the response to SCC Relevant Representations (Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014]).</p> <p>The Applicant has previously responded on comments relating to the health and wellbeing effects relating to the proposed working hours within Table 2.28 and Table 2.12 of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-104]. This sets out that a comprehensive Health and Wellbeing assessment has been undertaken as part of the EIA, which is based on the proposed working hours for the Proposed Project and concludes that no significant adverse effects on human health are anticipated.</p> <p>The Applicant has previously responded on comments relating to the impact of the proposed construction working hours on the PRoW network and tourism within Table 2.10 of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-104].</p>
A7.2	11.211 - 11.212	In Part 2 Suffolk Chapter 10 [APP-057], paragraphs 10.9.35, 10.9.56, 10.9.63, 10.9.69, 10.9.76, 10.9.79, 10.9.88, the Applicant states for several PRoWs, up to 20 HGV movements an hour to not be significant. This equates to approximately one every 3 minutes. SCC PRoW does not consider that this is not significant especially on bridleways, where horses, pedestrians and cyclists will be using the routes. The British Horse Society guidance on construction sites and horses (see Appendix 14) highlights horses' reactions to machinery and new things	SCC PRoW does not consider this to be fully addressed. The 20 HGV movements per hour is the worst-case scenario and being reduced to 38 per day. The applicant's response does not address how they came to that figure. Can this be clarified and justify why this is not a significant impact?	<p>The figures were based on the busiest day of the construction period and the average day across the construction period by the design engineers on the Proposed Project. The reasons why it is not a significant effect for Traffic and Transport has been previously outlined in Table 9.1 in Application Document 9.35.1 Applicant's Comments on Local Impact Report from Suffolk County Council [REP2-026], which relates to the measures set out within Application Document 7.5.9.1 Outline Public Rights of Way Management Plan – Suffolk [CR1-047]. Further details are also provided below.</p> <p>Application Document 6.2.2.10 (B) Part 2 Suffolk Chapter 10 Socio-economics, Recreation and Tourism [REP1A-005] considers the potential effects of the Proposed Project on disruption to PRoW and recreational routes, including changes to route quality, user experience, journey lengths and times, local travel patterns, and potential severance from local facilities. Section 10.9 identifies that where HGV movements are expected to cross PRoW, management and control measures will be</p>

Refere nce	Matter	Summary of Submission	Point Raised	Applicant's Comments
		and supports SCC's concerns on the 20HGVs per hour on PRoWs, especially bridleways.		adopted. Site fencing will be installed along the diverted route with gates each side of haul roads, where priority is given to PRoW and its users. PRoW users are anticipated to have uninterrupted use of footpaths and bridleways, with the only exception being when a pedestrian reaches the gates and an HGV is already on the haul road crossing point. In this scenario, the PRoW will be closed briefly and the user of the PRoW would be required to wait until the HGV crossing is complete and then the gates will re-open. As a result, the proposed measures will help manage PRoW users' interactions with construction movements, and therefore there are not anticipated to be significant effects.
A7.3	11.231 - 11.249	Public Rights of Way mitigation and compensation	These points have not been fully addressed and are still outstanding. SCC does not see a good reason why it is not being considered.	<p>The Applicant considers the committed mitigation proposed within the various Management Plans, including Application Document 7.5.9.1 Outline Public Rights of Way Management Plan – Suffolk [CR1-047] and Application Document 7.5.3.2 CEMP Appendix B Register of Environmental Actions and Commitments (REAC) [REP3-078] to be sufficient for mitigating the potential impacts of the Proposed Project, including from a Traffic and Transport and Socio-economics, Recreation and Tourism perspective. Nonetheless, the Applicant will review the Council's request for additional mitigation where this is not already proposed, to determine whether this is reasonable/necessary to help further mitigate any potentially significant effects as a result of the Proposed Project.</p> <p>As explained at ISH2 the Applicant is proposing to allow permissive access along the permanent access to the Saxmundham Converter Station, and through the woodland planting areas around the converter station, where this does not interfere with the construction of the LionLink converter station. Although the Applicant considers this to be an enhancement measure, it could also be taken as compensation.</p>
A7.4	11.272	This is not acceptable as a method of considering the PRoW and the Definitive Map should have been acquired from the definitive map team and correctly plotted. As incorrect assumptions on the definitive route, as opposed to assumed locations based on walked routes and desk top studies may lead to orders being invalid.	SCC has repeatedly requested that the applicant applies to the SCC definitive map team for the most up to date and correct information, they can also set out other issues and maps not available online yet. The applicant can apply to do this on the links they have included in their response.	The Applicant stands by its response to this matter in Table 9.1 of Application Document 9.35.1 Applicant's Comments on Local Impact Report from Suffolk County Council [REP2-026] . However, when Application Document 7.5.9.1 Outline Public Rights of Way Management Plan – Suffolk [CR1-047] is developed as part of Requirement 6 of Application Document 3.1 (F) Draft Development Consent Order [REP3-006] post consent, this will be taken into account.
A7.5	11.274	There is mention of use of a quad bike on the PRoW footpath, is the path suitable for use of a motorised vehicle, if not then we recommend that footpath E-103/006/0 to be resurfaced for its length.	The applicant has not directly responded to this point. SCC PRoW requires reassurance that any routes to be assessed by a motorised vehicle is accurately assessed with regards to the suitability of the surface, prior to assessing the route and with prior agreement with SCC PRoW. This should also be addressed and included in the PRoW MP. This is to ensure that no PRoW and surface is left in a lesser condition than prior to surveying.	The Applicant stands by its response to this matter in Table 9.1 of Application Document 9.35.1 Applicant's Comments on Local Impact Report from Suffolk County Council [REP2-026] . However, when Application Document 7.5.9.1 Outline Public Rights of Way Management Plan – Suffolk [CR1-047] is developed as part of Requirement 6 of Application Document 3.1 (F) Draft Development Consent Order [REP3-006] post consent, this will be taken into account.
A7.6	11.279	Traffic and Transport in terms of PRoW closures and diversion, does not address mitigation or effects if the schemes cannot be co-ordinated.	Does not appear to be addressed with regards to coordination. We note the commitment and increased coordination, but question reliance that effect will not be sufficient as raised in deadline 2 submission REP2-062 table	The Applicant stands by its response to this matter in Table 9.1 of Application Document 9.35.1 Applicant's Comments on Local Impact Report from Suffolk County Council [REP2-026] . The Applicant has committed to coordination with EA1N and EA2, however in reality it is

Refere nce	Matter	Summary of Submission	Point Raised	Applicant's Comments
		Moreover, the Applicant's coordination document [APP-363] does not address how PRoW management will be coordinated with the EA1N and EA2 projects. Therefore, it cannot be assumed that there will be no significant cumulative effects. Other sections state that cumulative receptors will have a moderate effect, but if co-ordinated then it is minor. Provision should be included in the application for additional mitigation or compensation measures if the coordination claimed in this assessment does not come to fruition during delivery.	6. All closures and diversions should be kept to the absolute minimum. This should also be mentioned in the PRoW MP with regards to the impacts if the works cannot be undertaken in a coordinated approach with other schemes, or those works have progressed and their closures and diversions are no longer in place, meaning that PRoW users will be impacted again!	unlikely that much coordination will be necessary. This is because SPR will have diverted PRoW around the Friston site prior to the Proposed Project connecting into the substation. As such, the Applicant will simply manage temporary closures and diversions, as necessary, in the same way as all other PRoW crossed by the Proposed Project. However, when Application Document 7.5.9.1 Outline Public Rights of Way Management Plan – Suffolk [CR1-047] is developed as part of Requirement 6 of Application Document 3.1 (F) Draft Development Consent Order [REP3-006] post consent, the Applicant will consider if any additional coordination is considered necessary and will secure it as part of the detailed Public Rights of Way Management Plan for Suffolk, which will require the approval of Suffolk County Council.
A8.1	Construction vehicle emissions 12.12 – 12.18	Health impacts from long- and short-term exposure to air pollution noted. Applicant reconfirms that their modelling concludes construction vehicle emissions from the Proposed Project are negligible.	An increase in traffic will lead to an increase in harmful pollutants. From a Public Health perspective, we do not have the expertise to comment on technical elements such as emissions modelling so will defer to East Suffolk Council on whether the increase in emissions from construction traffic has been accurately reflected in the Application Document 6.2.2.8 Suffolk Air Quality (Chapter 8). We will however continue to emphasise that pollution, even at low levels and on a temporary basis, can impact health and we therefore expect to see every effort made to keep levels as low as possible to protect the health and wellbeing of local communities.	The Applicant acknowledges the health impacts of both long- and short-term exposure to air pollution. The Applicant has therefore proposed several measures to minimise emissions including GG12, AQ04, AQ09, as outlined in Application Document 9.83 Outline Code of Construction Practice [REP3-076] . Measures including encouraging the construction staff to use sustainable transport and monitoring HGV movements and compliance with HGV routes are also included in Application Document 7.5.1.1 (B) Outline Construction Traffic Management and Travel Plan – Suffolk [CR1-041] .
A8.2	World Health Organisation Air Quality Guidelines 12.12 – 12.18	Applicant confirms the air quality assessment for the Proposed Project has been conducted in accordance with the current legal requirements and relevant guidance, ensuring that all statutory obligations are met.	Public Health are clear that the project is compliant with the current statutory Air Quality Objectives. However, it would be remiss for the World Health Organisation guidance to not be referenced (and re-referenced here) as its primary purpose is to protect public health as opposed to consider what is achievable. In response to the growing body of evidence suggesting that the Statutory Air Quality Objectives are not enough to protect health, SCC would like to see an emphasis not just on complying with the Statutory Limits but on bringing air pollution levels down as low as possible for the health and wellbeing of our residents.	The Applicant stands by its response to this matter in Application Document 9.35.1 Applicant's Comments on Local Impact Report from Suffolk County Council [REP2-026] . As stated above, the Applicant has proposed several measures to minimise emissions as far as practicable. The proposed air quality monitoring during the construction phase as outlined in Application Document 7.5.6.1 Outline Air Quality Management Plan - Suffolk [REP3-052] will be used to ensure the proposed mitigation measures are working effectively. Should monitored concentrations exceed the agreed thresholds as a result of the construction activities, additional abatement controls would be implemented, or the site works may temporarily stop until the issue is rectified. New procedures or controls would be developed where problems continue to occur, and Application Document 7.5.6.1 Outline Air Quality Management Plan - Suffolk [REP3-052] would be updated if required.

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
A8.3	Working hours 12.12 – 12.18	Applicant concludes no significant effects are anticipated with the inclusion of working hours on Sundays and Bank Holidays.	<p>Public Health does not concur with this conclusion and reiterates points raised in the SCC Local Impact Report regarding working hours.</p> <p>The Applicants response addresses the socio-economic, recreation and tourism effects but makes no reference to the mental health or well-being impacts (addressed further in health and wellbeing section below) exacerbated by concurrent NSIPs in close proximity.</p> <p>Whilst the Applicant makes reference to the proposed number of HGV movements being lower on Sundays and Bank Holidays it does not address the lack of respite from increased traffic and subsequent emissions.</p>	<p>Table 2.12 (against Reference 128) of Application Document 9.34.1 Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014] provides a response to the comment regarding the health and wellbeing impact of working hours on local communities.</p> <p>The air quality assessment as outlined in Application Document 6.2.2.8 Part 2 Suffolk Chapter 8 Air Quality [APP-055] has been undertaken in accordance with established guidance and best practice. It considers pollutant concentrations with reference to the relevant annual mean air quality objectives and utilises Annual Average Daily Traffic (AADT) flows to represent vehicle movements. This approach ensures that the assessment reflects the typical exposure experienced by local receptors over the course of a year, inclusive of variations in traffic volumes on Sundays and Bank Holidays. The annual mean methodology is appropriate for evaluating compliance with statutory air quality standards. Detailed modelling of construction vehicle emissions was undertaken and predicted concentrations both with and without the Proposed Project were all well below the respective air quality objectives/critical level and as such, there is no risk of the air quality objectives for PM₁₀ and NO₂ being exceeded.</p>
A9.1	13.21- 13.23 Local supply chain and economic impact	The Applicant intends to work closely with the Council and its contractors to develop a Social Value strategy. The Applicant has not committed to a dedicated Employment, Skills, and Education Strategy due to the perceived limited scale of construction employment impacts. The Applicant is exploring collaboration opportunities.	<p>The Council welcomes the Applicant's stated intention to work collaboratively and to develop a Social Value Strategy. However, the Council remains concerned that the absence of a project-specific Employment, Skills and Education Strategy, as part of the DCO submission, represents a risk with regards to securing meaningful socio-economic benefits and mitigate cumulative impacts. The Council does not consider reliance on contractor-level commitments alone to be sufficient or proportionate given the scale of concurrent NSIP activity in Suffolk.</p> <p>The Council considers that collaboration must move beyond high-level intent to binding commitments, secured through appropriate control documents. The Applicant should work proactively with SCC and the RSCF to ensure that Sea Link delivers measurable socio-economic benefits, mitigates cumulative risks, and leaves a positive legacy for Suffolk's communities and businesses.</p> <p>The Council supports the Applicant's exploration of links with Sizewell C's College on the Coast and expects this to form part of a wider, structured approach to skills development across Suffolk's energy cluster. Coordination should extend to other NSIPs to minimise cumulative impacts and optimise shared investment in training infrastructure</p>	<p>As set out in Application Document 6.2.2.10 (B) Part 2 Suffolk Chapter 10 Socio-economics, Recreation and Tourism [REP1A-005], the number of jobs supported by the Proposed Project is relatively low and short-term, when considered in isolation. The average construction workforce required for the Suffolk Onshore Scheme is 86 FTE per annum respectively. However, the Applicant recognises the importance of realising local skills and employment opportunities and is looking to discuss the terms and develop Skills and Employment Plans in liaison with the local planning authorities. The Applicant intends to submit outline Skills and Employment Plans at Deadline 6. The Applicant will arrange meetings to progress and discuss suitable opportunities that will form the outline plans with the local authorities.</p>
A9.2	13.24- 13.26	The Applicant's Environmental Statement applies a multiplier of 1.5	The Council remains concerned that these headline figures do not address the fundamental issue of localisation of	The multiplier is a composite figure which takes into account both the indirect jobs created based on supply chain activity but also the induced

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
	Localisation of economic benefits	and assumes 50% displacement and 70% leakage when calculating net additional employment and GVA.	<p>benefit. The Environmental Statement does not define the geography of indirect and induced impacts, nor does it propose measures to maximise local economic integration. A 70% leakage rate and the absence of a structured intervention plan effectively confirm that the majority of benefits will accrue outside Suffolk.</p> <p>The Council's Supplementary Guidance on Skills, Workforce and Supply Chain (January 2025) is clear that socio-economic modelling must be accompanied by a governance framework and proactive strategies to convert theoretical multipliers into tangible outcomes for local communities. Employment and GVA projections alone do not deliver inclusive growth. Without early engagement and binding commitments, the risk of high leakage and workforce displacement will persist, undermining Suffolk's ability to secure a skills legacy and supply chain growth.</p>	<p>employment created through increased spending. These induced and indirect impacts are assessed in Application Document 6.2.2.10 Part 2 Suffolk Chapter 10 Socio-Economics, Recreation and Tourism [REP1A-005] within the 60-minute Drive time Study Area and outside the Study Area. Table 10.23 presents the net additional construction employment per annum, setting out that the Suffolk Onshore Scheme will generate 7 indirect and induced jobs per annum within the 60-minute Drive time Study Area and 15 jobs per annum outside the Study Area.</p> <p>A response related to the provision of a Skills and Employment Plan is provided in response to A9.1 above.</p>
A9.3	13.53-13.59 Construction Phase Impacts – Tourism - Negative	<p>The Applicant acknowledges the importance of the local tourism economy and the concerns raised by SCC regarding potential cumulative impacts from multiple Nationally Significant Infrastructure Projects. To address concerns, Application Document 6.2.2.13 Part 2 Suffolk Chapter 13 Interproject Cumulative Effects [APP-060] of the Environmental Statement assesses the cumulative impact of Sea Link in addition to other Nationally Significant Infrastructure Projects. The assessment of inter-project cumulative effects for socio-economics, recreation and tourism has identified that there are six other developments that have potential to result in cumulative effects upon shared socioeconomic, recreation and tourism receptors. Impacts on residential receptors, business premises, community facilities, visitor attractions, development land, PRoW, and recreational routes are assessed within a 500 m Study Area from the Proposed Project's RLB. Impacts on employment generation, GVA, tourist accommodation, local labour supply and social infrastructure were assessed within a 60- minute drive time of the Suffolk Onshore Scheme.</p>	<p>The Council continues to consider that it has not been demonstrated that there will be no significant cumulative effects in relation to tourism as detailed in the Council's submission at the previous deadline [REP2- 062]. There should be a stronger commitment to community liaison which not only informs businesses but also seeks their views on how tourism impacts can be minimised such as through the phasing of works to avoid impacts on tourism receptors at peak times. This could be achieved through proactive communication and collaboration the Local Destination Management Organisation ("DMO") and the Local Visitor Economy Partnership ("LVEP") Detail should also be provided on how members of communities and businesses are kept informed. Further detail should be provided on how coordination will be sought with cumulative development during the delivery phase and how this is secured in the DCO.</p>	<p>At the hearings it was discussed that further evidence had been produced by local planning authorities on tourism. The Applicant will review this information when available.</p> <p>The Applicant is happy to agree that liaison will be undertaken with tourism related businesses, through proactive collaboration with the Local Destination Management Organisation ("DMO") and the Local Visitor Economy Partnership ("LVEP") prior to and during construction, not only to provide businesses with construction updates but to seek their views on how tourism impacts can be minimised such, as through the phasing of works to avoid impacts on tourism receptors at peak times. The Applicant is currently considering how best to incorporate this commitment into the application documents.</p>

Refere nce	Matter	Summary of Submission	Point Raised	Applicant's Comments
		The chapter concludes that no significant effects are expected when considering the impacts of the interproject cumulative schemes in aggregation with the Proposed Project, and therefore no mitigation will be required. The Applicant remains committed to minimising disruption and has proposed a series of embedded measures set out in Application Document 7.5.3.1 CEMP Appendix A Outline Code of Construction Practice [APP-341], such as GG27 commits to keeping members of the community and local businesses informed regularly of works through active community liaison.		
A9.4	13.80- 13.84 Required mitigation	The Applicant states that a full socioeconomic assessment has been completed and concludes there are no significant effects, so no mitigation is required. Consequently, they have not committed to an Employment, Skills, and Education Strategy, considering it inefficient given the limited construction workforce and lack of significant employment impacts.	<p>The Council acknowledges the Applicant's statement that the Environmental Statement concludes no significant socio-economic effects and therefore proposes no mitigation. However, the Council strongly disagrees with this position. The absence of significant effects in the ES does not remove the Applicant's responsibility to deliver positive provisions under EN-1 Paragraphs 5.13.4 and 5.13.11, which require consideration of job creation, training opportunities, and legacy benefits. The Council's Supplementary Guidance sets clear expectations that project promoters must go beyond baseline mitigation and actively support inclusive growth.</p> <p>The Council considers the decision not to prepare an Employment, Skills, and Education Strategy at project level to be unacceptable. While the Applicant cites efficiency concerns, this approach fails to recognise the cumulative NSIP context in Suffolk, where overlapping construction peaks from other projects will create unprecedented pressure on labour markets and training capacity. Without structured intervention, the risk of workforce displacement, high leakage, and negative churn will undermine local businesses and the wider energy cluster.</p>	<p>The Applicant remains confident in the assessment methodology and outcomes presented within the Environmental Statement with regards to socio-economics, recreation and tourism.</p> <p>A response to the Council's comment regarding a Skills and Employment Plan is provided in response to A9.1 above.</p>
A10.1	EMF 14.44	Impact of surface infrastructure and underground cables in respect to Electromagnetic fields	The Applicants response refers to Table 1.11 (Reference ESC – Mental Health and Wellbeing) and Table 1.12 (Reference ESC – Compensation) of [REP1A-043] which appear to be incorrect. Regardless, the parameters to which the proposals are designed are precautionary in approach based upon research and the Council has been reassured	This comment is noted by the Applicant.

Table A10 – 12.1 Applicant's Comments on Chapter 14: Health and Wellbeing

A10.1	EMF 14.44	Impact of surface infrastructure and underground cables in respect to Electromagnetic fields	The Applicants response refers to Table 1.11 (Reference ESC – Mental Health and Wellbeing) and Table 1.12 (Reference ESC – Compensation) of [REP1A-043] which appear to be incorrect. Regardless, the parameters to which the proposals are designed are precautionary in approach based upon research and the Council has been reassured	This comment is noted by the Applicant.
-------	-----------	--	---	---

Refere nce	Matter	Summary of Submission	Point Raised	Applicant's Comments
A10.2	Temporary workforce 14.45	Temporary workforce, with a portion anticipated to be filled by residents within the study area.	that all recognised standards in respect of Electric and Magnetic Forces will be adhered to. No comments necessary	No response required.
A10.3	Pressure on housing and community services 14.46	The predominance of non-local workers could place additional pressure on housing and community services.	Public Health notes the Applicant's response as detailed in [REP1A-043] ref 118-119 of table 2.11 and is reassured by the commitment to discuss concerns around visitors and tourism accommodation with the appointed contractor. However, Public Health would expect the Applicant to actively monitor impacts on local visitor and tourism accommodation capacity throughout construction and should monitoring identify that accommodation capacity is being stretched or exceeded, we expect the Applicant to consider and implement appropriate alternative arrangements to mitigate adverse impacts to local communities and services.	The Applicant is considering what commitments could be incorporated into application documents for monitoring accommodation utilised by construction workers and will feedback on this at Deadline 5. In the meantime, the Applicant is working closely with Sizewell C and SPR to explore ways that the impacts of construction workers traveling to site and staying in the local area could be minimised. The Applicant has had several meetings with Sizewell C, discussing the shared use of the Park and Ride Facilities being built by Sizewell C, the buses that they are providing for workers from Ipswich Train Station and any future initiatives they are planning. The types of construction workers used for the Proposed Project are more likely to stay in hotels within cities and large towns where they have access to other facilities based on experience from other National Grid projects.
A10.4	Construction traffic 14.47	Construction traffic and abnormal loads may also affect travel routes used by local businesses, leading to congestion, delays, and reduced accessibility for customers and suppliers. Businesses situated close to the Order Limits may experience both opportunities and challenges, benefiting from increased demand for accommodation and local services, but also facing potential disruption from noise, access changes, and short-term impacts on amenity.	Public Health notes the Applicant's response within [REP1A-043] ref 115 of Table 2.11 concluding of the socioeconomics and health and wellbeing assessments that no significant effects are anticipated. However, Public Health contend that construction traffic, abnormal loads, and associated construction activity have the potential to result in localised and short-term impacts on businesses, particularly those located close to the Order Limits.	<p>The Applicant recognises that the potential for future environmental changes associated with the Proposed Project during construction, operation and decommissioning are currently a source of concern for local businesses. To address this concern, the Applicant has undertaken a comprehensive and robust Environmental Impact Assessment, through which no residual significant effects have been identified within the socio-economics, recreation and tourism and health and wellbeing assessments following the application of appropriate mitigation.</p> <p>Section 10.9 of Application Document 6.2.2.10 (B) Part 2 Suffolk Chapter 10 Socio-economics, Recreation and Tourism [REP1A-005] assesses potential effects of the Proposed Project on private and community assets. This considered potential severance impacts on access to local businesses among other receptors as a result of the Proposed Project. The assessment has been informed by findings in Application Document 6.2.2.7 Part 2 Suffolk Chapter 7 Traffic and Transport [APP-054]. This concludes there are no roads assessed that would experience significant severance effects during construction. Accordingly, the assessment identified no significant effects on businesses premises.</p> <p>Impacts on amenity for these receptors are assessed in Application Document 6.2.2.11 Part 2 Suffolk Chapter 11 Health and Wellbeing [APP-058]. In light of the topic-specific conclusions identified and mitigation in place, no significant adverse effects on human health and wellbeing are identified. This includes no significant effects arising from construction in relation to community severance, air quality, landscape and visual or noise that would materially affect health and wellbeing outcomes.</p> <p>In summary, there will be no significant effect on local businesses arising from construction of the Suffolk Onshore Scheme. However, the Applicant is reviewing potential opportunities to liaise with tourism related businesses to seek their views on how tourism impacts can be minimised.</p>

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
A10.5	Community amenity 14.48-49	Temporary or permanent closures, diversions, or reductions in amenity and access to social infrastructure, the PRoW network and green and blue spaces, combined with increased traffic, noise, and other construction related disturbances, have the potential to adversely affect community health and wellbeing.	No comments necessary.	No response required.
A10.6	Community severance 14.50	Community severance between neighbourhoods, reducing access to community facilities and social interaction.	No comments necessary	No response required.
A10.7	Construction impacts and working hours 14.51	Effects are expected to be exacerbated by the proposed lengthy working hours, including activities on Sundays and Bank Holidays, which limit opportunities for rest and leisure. Moreover, when considered alongside the cumulative influence of other NSIPs already underway or planned in the locality, the potential for sustained stress, fatigue, and erosion of social cohesion is likely to be greater than the assessment currently suggests. SCC therefore considers that residual impacts on wellbeing, social cohesion, and mental health may be understated in the Applicant's conclusions.	The Applicants appears to respond to this comment in table 2.14 reference 135 as opposed to Table 2.12 reference 137. We note the Applicants comments, specifically that <i>construction noise level threshold for potential significant effects is lower during weekend and bank holiday daytime periods, compared to weekday and Saturday morning working periods</i> and concerns that shortening working hours could extend the project delivery. Public Health maintains the position that project delivery timescales should not take precedence over the protection of human health and wellbeing. We consider that the Applicant's assessment understates the potential impacts of prolonged construction working hours on community wellbeing and, as currently proposed, presents a material risk to residential amenity and mental health.	The Applicant acknowledges the incorrect reference. The correct reference is Table 2.12 (against Reference 128) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014] which provides response to the comment regarding the health and wellbeing impact of working hours on local communities.
A10.8	Community access to healthcare services 14.52-14.55	SCC considers that construction-related disruption to access to healthcare services, particularly during peak periods and extended working hours, could have greater real-world impacts on community health and wellbeing than the Applicant's assessment suggests, especially for vulnerable and rural populations and in the context of cumulative pressures from other NSIPs.	Public Health notes the Applicant's response and the conclusions of the health and wellbeing [APP-058] and cumulative effects assessments [APP-060], which identify no significant effects. However, Public Health maintains its position that the assessment conclusions rely on assumptions regarding duration of disruption, baseline service capacity, and resilience of access routes which may not fully reflect local conditions, particularly in rural areas or where multiple NSIPs are constructed concurrently. As set out in the LIR, even short term or localised disruption to healthcare access can have disproportionate impacts on vulnerable groups and contribute to stress and anxiety within affected communities.	The Applicant notes Public Health's reiteration of concerns regarding potential disruption to healthcare access during construction, particularly for vulnerable and rural populations, and in the context of cumulative pressures from other NSIPs. However, these matters have been explicitly considered within Application Document 6.2.2.11 Part 2 Suffolk Chapter 11 Health and Wellbeing [APP-058] and Application Document 6.2.2.13 Part 2 Suffolk Chapter 13 Inter-Project Cumulative Effects [APP-060] . The assessment does not indicate that such effects would give rise to significant adverse health outcomes. On this basis, the conclusions of no significant effects on community health and wellbeing remain robust and appropriate.
A10.9	Public mental health, social cohesion, and	Mental health and wellbeing of local residents, social cohesion, and community identity.	The Applicants response refers to Table 2.12 References 135 and 136 [REP1A-043], however these references, found in Table 2.14 and 2.15 respectively do not relate to health and wellbeing, but construction working hours and SFRS matters.	The Applicant acknowledges the incorrect reference. The correct reference is Table 2.12 (against Reference 126) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014] .

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
		community identity 14.56- 14.57		
A10.10	Construction working hours 14.58- 14.60	The proposed construction working hours, as currently set out, would allow activities from as early as 07:00 -19:00 on weekdays plus a provision for start-up and close-down activities up to 1 hour either side of these core working hours, and from 07:00 – 17:00 on weekends and bank holidays. This leaves local communities with little opportunity for respite from construction related noise, vibration, traffic, and disruption.	The Applicants appears to respond to this comment in table 2.14 reference 135 as opposed to Table 2.12 reference 137. Public Health welcomes the commitment to mirror the working hours agreed for the Scottish Power Renewables project at the Friston substation site. However, Public Health's concerns regarding community respite, weekend and bank holiday working and the potential mental health and wellbeing impacts associated with extended construction hours appears not to have been addressed in full. Public Health therefore maintains our view as represented in the LIR and Reference no. 11.7 above.	The Applicant acknowledges the incorrect reference. The correct reference is Table 2.12 (against Reference 128) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014] which provides response to the comment regarding the health and wellbeing impact of working hours on local communities.
A10.11	Cumulative impacts 14.61- 14.64	SCC considers that the Applicant's cumulative impact assessments underestimate the real world social and psychological effects of multiple infrastructure projects, as prolonged disruption, uncertainty, and repeated construction activity can exacerbate mental health impacts and reduce community cohesion, particularly for vulnerable residents.	The Applicants response refers to Table 2.12 Reference 136 [REP1A-043], however there is not a reference 136 within Table 2.12. There is a reference 136 within Table 2.15 but this relates to SFRS matters.	The Applicant acknowledges the incorrect reference. The correct reference is Table 2.12 (against Reference 127) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014] .
A10.12	Community engagement 14.65- 14.66	SCC consider it essential for promoters to adopt a collaborative approach, involving the community meaningfully in the design and delivery of the project.	The Applicants response refers to Table 2.12 Reference 132 to 134 and 138 to 140 of [REP1A-043], however the references are not present within Table 2.12. References 132 to 134 and 138 to 140 are present under Tables 2.13, 2.14, 2.16 and 2.17 relating to topics of Air Quality, Noise & Vibration, Emergency Planning and DCO, but not relating to Community Engagement.	The Applicant acknowledges the incorrect reference. The correct references is Table 2.12 (against References 123 – 125 and 129 – 131) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014] .
A10.13	EMF 14.68	Operational impacts related to Electrical infrastructure with associated Electrical and Magnetic forces	No comments necessary	This comment is noted by the Applicant.
A10.14	Public Mental Health 14.72-74	The operation of the Proposed Scheme may continue to exert influences on the mental health and wellbeing of local residents and communities. Once operational, changes to the local environment such as visual intrusion, maintenance traffic movements, lighting, and changes in local air quality may alter residents' sense of place, comfort, and security.	The Applicants refers to responses with references 135, 136, 132 to 134 and 138 to 140 in Table 12 References 135 and 136 are not present within Table 2.12. There are reference 135 and 136 within Tables 2.14 and 2.15 but these relate to Noise and Vibration and SFRS matters that do not appear relevant to health and wellbeing. References 132 to 134 are present under Tables 2.13, 2.14 and relate to Air Quality, Noise and Vibration but the	The Applicant acknowledges the incorrect references. The correct references are set out below. A response to the comment regarding the assessment of mental health impacts on local communities can be found in Table 2.12 (in response to Reference 126) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014] . A response to this comment regarding cumulative health and wellbeing impacts can be found in Table 2.12 (Reference 127) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014] .

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
A10.15	Local employment 14.82-14.85	SCC believe the Applicant should develop and implement a Local Employment and Skills Plan prepared in collaboration with SCC	<p>comments and do not appear relevant to health and wellbeing.</p> <p>References 138 to 140 are present under Tables 2.16 and 2.17 relating to topics of Emergency Planning and DCO and do not appear relevant to health and wellbeing.</p>	<p>A response to this comment regarding consultation and community engagement can be found in Table 2.12 (in response to References 123 – 125 and 129 – 131) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014].</p>
A10.16	Access and use of PRoWs and social infrastructure 14.86-14.88	SCC recognises that even with the proposed measures in place, there will be an unavoidable residual negative impact on local access, amenity, and community wellbeing relative to the existing baseline	<p>Public Health notes the Applicant's willingness to engage collaboratively and to develop a Social Value strategy with its main works contractors. This is welcomed; however Public Health maintains that a specific, project level Local Employment and Skills Plan is necessary to ensure measurable, transparent commitments to prioritise local labour, deliver targeted skills, training, and apprenticeship opportunities and provide a robust monitoring and reporting framework.</p>	<p>A response to the Council's comment regarding a Skills and Employment Plan is provided in response to A9.1 above.</p>
A10.17	Impact of restricted access to health infrastructure 14.89-14.92	SCC expects the Applicant to implement, monitor, and coordinate mitigation measures across relevant plans to minimise disruption to healthcare access, including engagement with communities and providers, temporary access arrangements, and coordination with other NSIPs	<p>The Applicants response refers to Table 12.2 References 135 and 137 of [REP1A-043]. References 135 and 137 are not present within Table 2.12. There are references 135 and 137 within Tables 2.14 and 2.15 but these relate to Noise and Vibration and SFRS matters that do not appear relevant to health and wellbeing.</p>	<p>The Applicant acknowledges the incorrect reference. The correct reference is Table 2.12 (against Reference 126) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014].</p>
A10.18	Public Mental Health 14.93-14.95	To effectively mitigate the effects of prolonged construction disturbance on community wellbeing, SCC expect the Applicant to revise the proposed core working hours to minimise avoidable noise, vibration, and disruption and protect public mental health.	<p>The Applicants response refers to Table 2.11 Reference 137 [REP1A-043], however there is not a reference 137 within Table 2.11.</p>	<p>The correct reference regarding cumulative health and wellbeing impacts is Table 2.12 (against Reference 127) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014].</p>
			<p>Public Health welcomes the commitment to mirror the working hours agreed for the Scottish Power Renewables project at the Friston substation site. However, Public Health maintains its concerns regarding community respite, weekend and bank holiday working and the potential mental health and wellbeing impacts associated with extended construction hours and therefore maintains its position that Construction activity should be limited to Monday–Friday: 08:00–18:00 and Saturday: 08:00–13:00, with no works permitted on Sundays or Bank Holidays, except in exceptional circumstances agreed in advance with SCC. Start-up and close-down periods should be strictly limited to</p>	<p>The Applicant acknowledges the incorrect references. The correct reference regarding the coordination of projects is Table 2.12 (against References 128) of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014].</p> <p>The remainder of the comment is noted by the Applicant.</p>

Reference	Matter	Summary of Submission	Point Raised	Applicant's Comments
A10.19	Community engagement 14.96	SCC considers that whilst the REAC [APP342] commitment to community liaison is welcomed, it is insufficient to address the full range of wellbeing and mental health impacts, and therefore expects the Applicant to implement a comprehensive community engagement and wellbeing programme, including a dedicated relationship manager, regular face to face engagement, investment in local assets, support for mental health, early and continuous participation, clear information on compensation, and ongoing monitoring and adaptive management in line with SCC's Supplementary Guidance Document on Community Engagement and Wellbeing.	<p>no more than one hour either side of the core hours and must exclude any activity likely to cause disturbance to nearby residents or businesses.</p> <p>The Applicants response refers to Table 2.12 References 136, 132 to 134 and 138-140 of [REP1A-043]. However, the references are not present within Table 2.12.</p>	The Applicant acknowledges the incorrect references. A response to this comment regarding consultation and community engagement can be found in Table 2.12 (in response to <i>References 123 – 125 and 129 – 131 of Application Document 9.34.1 (B) Applicant's Detailed Responses to the Relevant Representations identified by the ExA [REP2-014]</i>).
A11.1	15.71 Schedule 4 (discharge of requiremen ts) (paragrap h 1, timescales)	<p>The Applicant acknowledges these comments regarding the timescales in Schedule 4 of the Application Document 3.1(E) draft Development Consent Order [REP1-036]. However, the Applicant considers that the time limits are necessary and proportionate and have been deemed acceptable by the Secretary of State on previous National Grid DCOs, including the National Grid (Bramford to Twinstead Reinforcement) Order 2024 and the National Grid (Yorkshire Green Energy Enablement Project) 2024.</p> <p>However, the Applicant will nevertheless negotiate Planning Performance Agreements as necessary and at the appropriate time, to ensure the LPA is able to respond on programme.</p>	<p>The Council continues to disagree with the Applicant's position regarding timescales in Schedule 4 of the DCO. Whilst the Council welcomes that the Applicant will enter into a Planning Performance Agreement, it should be noted that this would not necessarily ensure the Council is able to respond on programme. PPAs provide cost-recovery but they do not provide for costs beyond that. This means that the council may not be able to fund an increase in capacity necessary to meet the condensed timescales proposed by the Applicant. A longer time period would therefore lessen the pressure on the Council's capacity to respond to and decide the applications.</p>	The Applicant notes these comments but maintains that the time limits are necessary and proportionate and consistent with other DCOs.

10. Applicant's Comments on the Submission from Port of London Authority

10.1 Introduction

10.1.1 Table 10.1 summarises the Applicant's comments on Port of London Authority Deadline 3 Response [REP3-121].

Table 10.1 Applicant's Comments on the Port of London Authority Deadline 3 Submission [REP3-121]

Reference	Matter	Point Raised	Applicant's Comments
2.1	Update and submission of key documents (dDML, REAC, plans, ES chapter); Areas of Interest, protective provisions, UXO consenting and REAC scope/authority	<p>The Applicant's response to the PLA's Written Representation is set out in table 2.9. A substantial amount of the PLA's Written Representation is 'noted by the Applicant.' Where the Applicant provides a more substantive response this can be summarised as:</p> <ul style="list-style-type: none">At deadline 3 the following documents are to be updated and submitted by the Applicant:<ul style="list-style-type: none">Deemed Marine Licence (dDML)The Register of Environmental Actions and Commitments (REAC)At deadline 4 the following documents are to be submitted into the examination:<ul style="list-style-type: none">an outline Cable Specification and Installation Plan (oCSIP) with outline Sediment Disposal Management Plan (oSDMP) incorporatedan updated outline Navigation and Installation Plan (oNIP)an updated Chapter 7 of the Environmental Statement – Shipping and NavigationDiscussions are ongoing regarding the Areas of Interest and the depths to be safeguarded.Protective provisions for the Port of London Authority are under review by the Applicant.UXO is not included within the dDML and is being consented separately through a marine licence application.The REAC contains both onshore and offshore commitments as the Applicant considers splitting the REAC into separate offshore and onshore documents increases the risk of contractors not having full visibility of all project commitment. The Applicant recognises that certainty is required over which bodies are defined as the discharging authority for the REAC.	This is noted by the Applicant.
2.2	Timely submission of updated documents	The PLA will comment on the new and updated documents as and when they are available, including the protective provisions. The PLA would emphasise the importance of submitting the documents at the deadlines outlined above given that deadline 4 is over half way through the examination period.	This is noted by the Applicant.

Reference	Matter	Point Raised	Applicant's Comments
2.3	Need for certified plan and DCO requirements for safeguarded dredging depths	<p>The Applicant asks for clarification on the PLA's reference to the absence of a certified plan and design requirement. The PLA would draw the Applicant's attention to the recent decision on Five Estuaries Wind Farm [PINS Reference: EN010115] which contains a Certified Deep Water Route Cable Installation Area (Future Dredging Depths) Plan [REP6-055] and the Development Consent Order (DCO) as made by the Secretary of State. The DCO contains within the Schedule 2 Requirements, offshore design parameters, including at Part 1 (3) a requirement that the cable must be installed and maintained so as not to impede dredging to certain depths in certain locations. The locations being shown on the Certified Plan. A Certified Plan and Requirement is also proposed for the North Falls Offshore Wind Farm [PINS Reference: EN010119]. The PLA is seeking for the Applicant to take a similar approach with the Sea Link Project so it is clear on the face of the Order what water depths must be protected in what areas, regardless of the existing depths, and ensures that there is the ability to dredge to the required depths. The PLA set out in Section 11 of its Written Representation suggested wording for the Requirement and highlighted the need for the wording to also ensure that GridLink could be accommodated should it be installed after Sea Link. The PLA suggest the following wording:</p> <p>"Requirement X</p> <p><i>That any part of Work No.6, including any associated development or ancillary works, located within the Areas of Interest must be installed at a level which would not impede the dredging of those parts of the Areas of Interest to the following depths:</i></p> <ul style="list-style-type: none"> (a) <i>Labelled "Sunk Pilot Boarding area", to a level of 22 metres below Chart Datum; and</i> (b) <i>Labelled "Long Sand Head Two-Way Route crossing", to a level of 12.5 metres below Chart Datum; and</i> (c) (c) <i>Labelled "North East Spit area" to a level of 12.5 metres below Chart Datum;</i> <p><i>and in all cases (a) to (c) makes allowance for an 'over-dredge' tolerance of 0.5 metres in addition to the stated depths attributable to standard dredging methodology.</i></p> <p>Requirement Y</p> <p><i>When complying with Requirement [X] the installation level of any part of Work No.6, including any associated development or ancillary work, must be at such a level that case (c) will be achieved even after any part of the works is crossed by the cable(s) for the GridLink Interconnector Project within the Areas of Interest."</i></p> <p>The PLA suggest the following wording for the definition of GridLink Interconnector:</p> <p><i>"means the electricity interconnector project designated as a European Union Project of Common Interest, project number No. 2018/540".</i></p>	<p>The Applicant agrees that the commitment to protect dredging depths within the defined Areas of Safeguarded Depth and in the terms proposed is acceptable in principle. The outstanding question is the appropriate mechanism for securing the commitment, in particular whether this should be through a DCO Requirement or as a condition within the Deemed Marine Licence. The Applicant's current approach is to secure the commitment through the DML.</p> <p>Condition 4 of the DML requires the CSIP to be submitted to and approved by the MMO before works can commence. The CSIP needs to be generally in accordance with the outline CSIP (which already features the commitment) and the CSIP must include details regarding the installation depth. Under the Protective Provisions, the Applicant is then again required to ensure that the CSIP includes the commitment and that the Port Authorities are consulted on this to make sure of that before it is submitted to the MMO. This ensures that the Port Authorities have a direct role in validating that the commitment is properly reflected before approval is sought.</p> <p>Once submitted to and approved by the MMO it forms part of the licenced activities which are enforced by the existing and comprehensive regulatory regime under the Marine and Coastal Access Act 2009. This is all done by reference to the Areas of Safeguarded Depth Plan which is certified so that all parties have certainty on the areas to which the commitment applies.</p> <p>Such a DCO Requirement would need a discharging authority and clear mechanisms to discharge the Requirement (or confirm compliance). Given the Areas of Safeguarded Water Depth are located offshore, there is no relevant planning authority with an existing regulatory scheme so the Requirement would need to be tailored to set out these elements in full. The discharging authority could be one of several parties with overlapping interests (including the PLA, MCA or LGPL) but because only one party can be the discharging authority (with others potentially as 'Requirement Consultees'), the Applicant would expect this Authority to be the MMO.</p> <p>Any such Requirement would then need to set out how the MMO would approve, regulate, and discharge this Requirement. These are all things which already exist in the DML scheme under the Marine and Coastal Access Act 2009.</p> <p>Securing the commitment as a condition in the DML follows a clearer route and ensures that the works can only commence after the CSIP (which must include the depth protection commitment) is approved by the MMO. Enforcement falls to the MMO under s.85 of the Marine and Coastal Access Act 2009. This is a comprehensive statutory</p>

Reference Matter	Point Raised	Applicant's Comments
		<p>framework which grants the MMO enforcement powers including in respect of marine licence conditions.</p> <p>The Applicant invites the PLA to discuss which mechanism is most appropriate for this commitment. In particular, discussion on how the proposed DCO Requirement wording can be tailored to properly function as intended is sought as well as how this would differ from the current approach under the DML.</p>
		<p>A Plan of the Areas of Safeguarded Water Depth has been submitted at Deadline 4 (Application Document 9.104 Areas of Safeguarded Water Depth Plan).</p> <p>The Applicant has agreed to the terms of a commitment to secure the following three Areas of Safeguarded Water Depth:</p> <ul style="list-style-type: none"> Sunk Pilot Boarding area to a level of 22 metres below Chart Datum. Long Sand Head Two-Way Route crossing area, to a level of 12.5 metres below Chart Datum. Northeast Spit area to a level of 12.5 m below Chart Datum. <p>In all cases makes allowance for an 'over-dredge' tolerance of 0.5 m in addition to the stated depths attributable to standard dredging methodology.</p>
		<p>The future dredging depths for the three Areas of Safeguarded Water Depth are currently secured within the Outline Cable Specification and Installation Plan (Application Document 9.92) submitted at Deadline 4. Under Condition 4 of the DML a Cable Specification and Installation Plan document in respect of those licensed activities, which is in general accordance with the principles set out in the outline Cable Specification and Installation Plan must be submitted to the MMO for approval before works can commence. This commitment is included within the Protective Provisions with PLA and LGPL which are currently being developed.</p>
		<p>The Applicant confirms that it is reviewing the Securing Mechanisms for all Shipping and Navigation commitments for the Proposed Project, this includes the dDCO Requirements and DML conditions. An update to Application Document 3.1 draft Development Consent Order will be submitted at Deadline 5.</p>
		<p>For the avoidance of doubt, the Applicant would also like to restate that the Proposed Project does not intersect with any Deep Water Routes, so any Certified Plans will only be in relation to the agreed Areas of Safeguarded Depth, and not Deep Water Routes.</p>

Reference Matter	Point Raised	Applicant's Comments					
		<p>The Applicant also provides an answer to the matter commitment wording in Application Document 9.73 Applicant's Responses to First Written Questions [REP3-069], question 1SN3.</p>					
2.4	<p>DCO requirements needed to confirm TDoL and under keel clearance</p>	<p>In relation to reference 5.8, further information is given by the Applicant regarding the Target Depth of Lowering (TDoL) which the Applicant states will need to safeguard under keel clearance in the areas of interest, which will be secured through DCO requirements and Protective Provisions and supported by management plans such as the OCSIP. The PLA needs to see the DCO requirements, Protective Provisions and management plans in order to have the certainty that the TDoL will safeguard under keel clearance.</p>	<p>The Applicant confirms that is also currently reviewing the REAC and associated Requirement 6 in light of the points raised at the ISH2, and we propose to ameliorate that drafting such that the provisions raised at the hearing are appropriately secured. The REAC will be submitted at Deadline 4A.</p>	<p>A Plan of the Areas of Safeguarded Water Depth has been submitted at Deadline 4 (Application Document 9.104 Areas of Safeguarded Water Depth Plan).</p>	<p>The future dredging depths for the three Areas of Safeguarded Water Depth are currently secured within the Outline Cable Specification and Installation Plan (Application Document 9.92) submitted at Deadline 4. Under Condition 4 of the DML a Cable Specification and Installation Plan document in respect of those licensed activities, which is in general accordance with the principles set out in the outline Cable Specification and Installation Plan must be submitted to the MMO for approval before works can commence. This commitment is included within the Protective Provisions with PLA and LGPL which are currently being developed.</p>	<p>The Applicant confirms that it is reviewing the Securing Mechanisms for all Shipping and Navigation commitments for the Proposed Project, this includes the dDCO Requirements and DML conditions. An update to Application Document 3.1 draft Development Consent Order will be submitted at Deadline 5.</p>	<p>The Applicant confirms that we are currently reviewing the REAC and associated Requirement 6 in light of the points raised at the ISH2, and we propose to ameliorate that drafting such that the provisions raised at the hearing are appropriately secured through the REAC which will be submitted at Deadline 4A.</p>
2.5	<p>Avoidance of cable joints in Areas of Interest</p>	<p>The Applicant remains open to further dialogue with the PLA regarding potential measures to avoid the placement of cable joints within areas identified for safeguarding water depths (Reference 6.9). As set out in its deadline 2 response, the PLA would suggest that the Applicant could commit to no planned field joints within the Areas of Interest.</p>	<p>The Applicant can confirm that there are no planned cable joints within the three Areas of Safeguarded Depth excluding the need for any unforeseen repairs during installation and/or the operational lifetime which is secured within the Outline Cable Specification and Installation Plan (Application Document 9.92) submitted at Deadline 4.</p>	<p>Currently Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078] secures "Avoiding disruption to the Sunk anchorage area and Sunk pilot boarding area during construction by minimising time spent in this region during construction and avoiding cable joints in this area where possible" under SN19. The Applicant will consider this suggestion and update</p>			

Reference Matter	Point Raised	Applicant's Comments
		<p>this commitment to include the three areas of Safeguarded Depth if this is practicable.</p> <p>The Applicant provides a further response on the matter of cable joints in the Areas of Safeguarded Depths in Application Document 9.73 Applicant's Responses to First Written Questions [REP3-069], question 1SN11.</p> <p>The Applicant confirms that we are currently reviewing the REAC and associated Requirement 6 in light of the points raised at the ISH2, and we propose to ameliorate that drafting such that the provisions raised at the hearing are appropriately secured through the REAC which will be submitted at Deadline 4A.</p>
2.6	Traffic management concerns at Long Sand Head crossing	<p>At entry Reference 10.3 the Applicants states – the Applicant's understanding is that the "Long Sand Head Two-Way Route Crossing Area" is specifically relating to water depth safeguarding, and not traffic management. The PLA disagrees. The PLA is concerned about traffic management in the Long Sand Head two-way route as well as water depth.</p> <p>The Applicant appreciates this clarification and remains open to further discussions with the PLA on this matter to find agreement. The Application Document 9.12 Outline Navigation and Installation Plan [AS-104] (the oNIP) will continue to evolve, so the three existing oNIP areas of interest (AOIs) could be expanded to include the Long Sand Head Two-Way Route Crossing Area. The Applicant will discuss this further to reach agreement. The Applicant has submitted an updated version of Application Document 9.12 Outline Navigation and Installation Plan [AS-104] at Deadline 4.</p> <p>However the Applicant does note that vessel traffic within the "Long Sand Head Two-Way Route Crossing Area" is at significantly lower level than in other areas such as the Sunk Outer Precautionary Area, the approaches to Harwich Harbour and the Princes Channel approaches to the Thames Estuary (please see Application Document 9.96 Water Depth Baseline Study submitted at Deadline 4 for further detail), and the cable section which crosses the Long Sand Head Two-Way Route is only approximately 5 km long. Nonetheless the Applicant acknowledges this request for further traffic management measures in this area.</p>
2.7	Vessel access over Sea Link cables to deep water routes	<p>Finally, in table 2.1 in response to London Gateway's comment Reference 4.5, the Applicant states that the Sea Link cable route does not overlap with the Sunk Deep Water Route or Trinity Deep Water Route as the cable was rerouted to avoid these features. Whilst the PLA agrees that the Sea Link cable route does not cross these routes, ships will have to pass over the Sea Link cables to access the Sunk and Trinity Deep Water Routes.</p> <p>This is noted by the Applicant.</p>

11. Applicant's Comments on the Submission from the Marine Management Organisation

11.1 Introduction

11.1.1 Table 11.1 summarises the Applicant's comments on the Marine Management Organisation's Deadline 3 Response [REP3-094].

Table 11.1 Applicant's Comments on the Marine Management Organisation's Deadline 3 Submission [REP3-094]

Reference	Matter	Point Raised	Applicant's Comments
2.1.1 Comments on Any Other Submissions Received at Deadline 3			
1GEN58.	Schedule 16 DML – condition 4(4) Part 2 condition 4(4) includes provision for deemed consent where the MMO fails to give a decision within 16 weeks. In this situation, the programme, statement, plan, protocol or scheme would be deemed to be approved by the MMO. Provide your views on this provision for deemed consent.	<p>The MMO does not agree with the wording of this condition. As stated in our Relevant Representation [RR-3476], the MMO considers that it is inappropriate to put timeframes on complex technical decisions.</p> <p>The time it takes the MMO to make such determinations depends on the quality of the application made, and the complexity of the issues and the amount of consultation the MMO is required to undertake with other organisations to seek resolutions.</p> <p>The MMO's position remains that it is inappropriate to apply a strict timeframe to the approvals the MMO is required to give under the conditions of the DML given this would create disparity between licences issued under the DCO process and those issued directly by the MMO, as marine licences issued by the MMO are not subject to set determination periods. Whilst the MMO acknowledges that the Applicant may wish to create some certainty around when it can expect the MMO to determine any applications for an approval required under the conditions of a licence, and whilst the MMO acknowledges that delays can be problematic for developers and that they can have financial implications, the MMO stresses that it does not delay determining whether to grant or refuse such approvals unnecessarily. The MMO makes these determinations in a timely manner as it is able to do so.</p> <p>It is therefore not appropriate for any programme, statement, plan, protocol or scheme to be deemed to have approval if it is not approved by the MMO within 16 weeks. The MMO's view is that it is for the developer to ensure that it applies for any such approval in sufficient time as to allow the MMO to properly determine whether to grant or refuse the approval application</p>	<p>The Applicant confirms that it has actively been engaging with the MMO with regards to this condition, and will review the current approach received from the MMO via email on 22 January 2026.</p>
1GEN60	Schedule 16 DML – condition 13	The MMO is currently reviewing this condition and will provide further comments at a following deadline.	This is noted by the Applicant.

	Provide an explanation of the purpose and effect of condition 13, including justification for the 10 year period. Update the explanatory memorandum accordingly. MMO to provide their view on condition 13.		
1GEN67	<p>Surveys and monitoring conditions</p> <p>Applicant - It is common with DMLs Therefore, the MMO defers a response to a following deadline. as part of DCOs which have an offshore element for there to be a condition requiring details of planned pre-construction surveys and monitoring to be agreed with the MMO and NE. Notwithstanding the details within the submitted oOCEMP, is there a need for such a condition to be within the DML to secure this? Similarly, is there a need for a condition within the DML for post-construction monitoring, to include adaptive management where necessary, with details and methodology to be first agreed with MMO and NE?</p> <p>NE and MMO - If considered necessary is there wording that could be suggested.</p>	<p>The MMO is currently reviewing this and are liaising with Natural England.</p> <p>This is noted by the Applicant.</p>	
1PE3	<p>Suspended sediments and contamination</p> <p>Do any of the areas of sediment bound contamination along the marine cable route identified as exceeding CEFAS Action Level 1 in section 1.7 of [REP1-051] require special working arrangements to minimise adverse effects (for example, adjacent to Goodwin Sands or within Pegwell Bay?).</p>	<p>The MMO notes that in the sample results provided to the MMO that trace metal results are below UK Action Level (AL) 1 with the exception of arsenic, chromium and nickel which exceed their AL1 marginally in ten, two, and two samples respectively. The Polycyclic Aromatic Hydrocarbon (PAH) results are observed to be predominantly below the Limit of Detection (LOD), and where above the LOD, are very low level (~1 -4ppb). These results are considered to pose a very low risk to the marine environment and therefore do not preclude the material from disposal at sea.</p> <p>Section 1.7.83 of the Marine Sediment Quality section of Chapter 1 Physical Environment document provides the Applicant's assessment of the results. They state "Cefas Action Level 1 threshold values were exceeded at 32 sites for arsenic (As), two sites for cadmium (Cd), five sites for chromium (Cr), one site for copper (Cu), one site for lead (Pb), 22 sites for mercury (Hg), two sites for nickel (Ni) and two sites for Zinc (Zn). These trace metals were found at all of the sampling sites, however none of the samples exceeded the CEFAS (MMO, 2014) Action Level (AL) 2 threshold. THC concentrations varied along the survey route and did not exceed the Dutch RIVM intervention value, which is a</p>	<p>All data, including the complete THC data, collected during the 2021 survey campaign are presented in the 2022 MMT Report Application Document 6.3.4.2.A ES Appendix 4.2.A Benthic Characterisation Report (Original Report) [APP-196].</p> <p>As discussed with the Marine Management Organisation (MMO) via email on 20 January 2026, the environmental data collected as part of the 2021 survey was not analysed by a MMO accredited laboratory. This was one of the reasons why a second geotechnical survey campaign in 2024 was required in order to fulfil this need in specific areas of pre-sweeping across the cable route following the receipt of sample plan advice from the MMO on 5 December 2022.</p> <p>The Applicant is therefore unable to provide the 2021 geotechnical survey data in the requested MMO template for review, however, this data in its entirety is available for review in Application Document 6.3.4.2.A ES Appendix 4.2.A Benthic Characterisation Report (Original Report) [APP-196].</p>

		<p>generic sediment quality standard used to classify 2 Cefas Action Levels are used to determine whether dredged material is suitable for disposal at sea, by providing a proxy risk assessment for potential impacts to biological features such as fish and benthos. PAH concentrations exceeded CEFAS (MMO, 2014) AL 1 and CCME ISQG (CCME, 2001) threshold values for three PAHs at one grab sample station within the Offshore Scheme Boundary, located at approximately KP 5.3. 1.7.88 Overall, concentration levels from within the survey area were not observed at levels that are of concern".</p> <p>The Applicant considers there to be more exceedances of trace metal determinants than our assessment. However, the MMO cannot comment on THC as these results were not provided.</p> <p>The MMO also wish to make it clear that the above comments are based on a preliminary review and on the assumption that they are representative of the full cable route and therefore have not been plotted to check their coverage. This is due to time constraints in responding to EXQ1.</p> <p>The MMO is therefore still undergoing review of the sample results provided and may provide further comments at Deadline 4.</p>	<p>The Applicant are actively working with the MMO to complete the requested 2024 survey templates in the requested format.</p>
1PE4	Need for designated disposal area	<p>The MMO notes that for non-trenchless techniques that the Applicant may wish to undertake some sort of bed levelling/sandwave clearance (potentially dredging) for these parts of the route. Therefore, the MMO considers that any area of the cable route using non-trenchless techniques are likely to require designated disposal sites. This is in line with the East Anglian 1 North Export Cable Corridor project which was designated under the code TH082.</p>	<p>The Applicant disagrees with the need for a designated disposal site outside of the order limits for the Proposed Project.</p> <p>The Applicant can confirm that pre-sweeping would be required if areas of large sand waves are identified within the Offshore Scheme which cannot be avoided. Pre-sweeping may be performed using a variety of tools including dredgers, MFE or controlled flow excavators (CFEs). The volume of material requiring disposal for the Proposed Project is up to 250,000 m³.</p> <p>The volume of material disturbed by sandwave clearance for the Proposed Project is not comparable to the volumes of material requiring disposal by offshore windfarm projects. For instance, Five Estuaries dredge and disposal activities for their project for sandwave clearing alone is 29,764,502 m³ with the East Anglian North Export Cable Corridor also requiring disposal of 1,000,000 m³ for sand wave levelling alone compared to the Proposed Project's 250,000 m³ for all activities.</p> <p>For the Proposed Project, the sand would be deposited within the Order Limits within the area of pre-sweeping in such a way that the local currents would not backfill the pre-sweep area prior to cable installation and protection. The mechanism to infill the rock trench and allow the seabed to revert to natural bedforms is by natural backfill and sediment circulation / deposition. This method has been applied to a number of other subsea cable projects including Eastern Green Link 1 and 2.</p>

1PE9	Microplastics arising from rock armour In other NSIP examinations (for example for Morecambe Offshore Windfarm) the MMO and NE highlighted concerns regarding microplastics. Are MMO or NE aware of any constraints relating to the generation of microplastics from rock armour solutions for this project (for example from rock bags) and if so, are any specific control measures for microplastics required?	The MMO is currently reviewing this and liaising with Natural England. Therefore, the MMO defers a response to a following deadline.	This is noted by the Applicant.
1MM14	HRA – Conclusions regarding prey availability NE has deferred to CEFAS on impacts associated with prey availability impacting marine mammal species. Can CEFAS confirm it agrees with the applicant's conclusion of no LSE to Annex II marine mammal European sites from indirect effects due to availability of prey species. If not, explain why.	The MMO is currently reviewing this alongside our scientific advisors at Cefas. Due to availability and time constraints over the Christmas period, the MMO defers its response to Deadline 4.	This is noted by the Applicant.
1SN16	Consultation with MCA Provide confirmation that there would be provision for the MCA to be consulted on the discharge of relevant shipping and navigation related conditions in the DML.	The MMO during the discharge of a return will consult with those stakeholders it considers relevant. In this instance the MMO will consult with the MCA on conditions involving shipping or navigation.	This is noted by the Applicant.
2.1	Updated versions of principal areas of disagreement summary statements (PADSS).	The MMO has reviewed its PADSS submitted on 28 August 2025 and considers that the document has remained unchanged. Please refer to AS-080 to view the MMO's PADSS.	This is noted by the Applicant.
3.1	Comments on any further information/submissions received by Deadline 2	The MMO has reviewed some of the submissions received at Deadline 2. However, due to the time from submission to publication and due to availability during the Christmas/New Year period, a full review has not been possible. The MMO will therefore provide further comment, where required, at Deadline 4.	This is noted by the Applicant.
3.2	Comments on any further information/submissions received by Deadline 2	The MMO notes ongoing discussions with the Applicant and relevant stakeholders. The MMO reminds the Applicant that any agreed submissions, mitigations (e.g. temporal or spatial), or other measures required, be secured by conditions within the Deemed Marine Licence.	This is noted by the Applicant.

Comments relating to the Draft Development Consent Order and Deemed Marine Licence

3.3

Main DCO

The MMO reiterates our previous position regarding the Transfer of the Benefit of the Order.

This is noted by the Applicant. The Applicant is currently reviewing the draft DCO/ DML and a response including an updated version of **Application Document 3.1 (F) Draft Development Consent Order [REP3-006]** will be submitted at a later deadline.

Part 2 Principal Powers

7. Consent to Transfer the Benefit of the Order

If the application for the DCO is granted, the MMO will be the regulatory authority responsible for the enforcement of the provisions of the DMLs. As a result, it has to retain a record of the DML and who holds the benefit of that licence in order to be able to fulfil its statutory responsibilities as it does in respect of any other Marine Licence.

The Marine and Coastal Access Act (“the 2009 Act”) addresses the procedure for transfer of a Marine Licence as follows:

“(7) On an application made by a licensee, the licensing authority which granted the licence—

(a) may transfer the licence from the licensee to another person, and

(b) if it does so, must vary the licence accordingly.

(8) A licence may not be transferred except in accordance with subsection (7).”

The purpose of these provisions is to ensure that there is at all times a record of the person who has the benefit of the licence. That is because pursuant to the Marine and Coastal Access Act 2009 section 65(1), no person may carry on a licensable marine activity, or cause or permit any other person to carry on such an activity, except in accordance with a marine licence granted by the appropriate licensing authority. A person who contravenes section 65(1) or fails to comply with any condition of a marine licence, commits an offence (see section 85(1) of the 2009 Act).

Thus, it is a key part of the enforcement provisions of the 2009 Act, that the MMO maintains a record of the person who has the benefit of a marine licence at all times.

In practice, the process of obtaining a transfer is relatively quick. Whilst the MMO officially indicates that this can take up to 13 weeks, it is an administrative task and in practice often much quicker and around 6 weeks. The MMO is not required to consult with any other body. As far as it is aware, the MMO has never refused a request to transfer a Marine Licence.

3.3 cont.

[Continuation of above, split by Applicant for ease of response]

DCO Article 7(1)

As presently drafted, dDCO Article 7(1) creates a power whereby the undertaker with consent of the Secretary of State can:

(a) transfer to another person (“the transferee”) any or all of the benefit of the provisions of this Order and such related statutory rights as may be agreed between the undertaker and the transferee;

		<p>(b) grant to another person ("the lessee") for a period agreed between the undertaker and the lessee any or all of the benefit of the provisions of this Order and such related statutory rights as may be so agreed.</p>	
3.3 cont.	[Continuation of above, split by Applicant for ease of response] Article 7(4)	<p>Article 7(4) also provides a power to the undertaker to:</p> <p>(a) Where an agreement has been made in accordance with paragraph 2(a), transfer to the transferee the whole of any of the deemed marine licences and such related statutory rights as may be agreed between the undertaker and the transferee; or</p> <p>(b) Where an agreement has been made in accordance with paragraph 2(b), transfer to the lessee for the duration of the period mentioned in paragraph 2(b), the whole of any of the deemed marine licences and such related statutory rights as may be so agreed.</p> <p>The consent of the Secretary of State to a transfer/grant pursuant to Article 7(1) or 7(4) is required except where Article 7(5) is applied. Where the Secretary of States consent is required, the dDCO provides that:</p> <p>(5) The Secretary of State must consult the MMO before giving consent to the transfer or grant to another person of the benefit of the provisions of the deemed marine licences.</p>	<p>This is noted by the Applicant. The Applicant is currently reviewing the draft DCO/ DML and a response including an updated version of Application Document 3.1 (F) Draft Development Consent Order [REP3-006] will be submitted at a later deadline.</p>
3.3 cont.	Basis for Objection	<p>The MMO raises objection to Article 7 in relation to:</p> <p>(a) The procedure seeking to duplicate the existing statutory regime set out in s72 of the 2009 Act;</p> <p>(b) The proposed procedure being cumbersome, more administratively burdensome, slower and less reliable than the existing statutory regime set out in s72 of the 2009 Act;</p> <p>(c) The power for an undertaker to grant a DML;</p> <p>(d) The basis for disapplication of the need for Secretary of State's consent to a transfer/grant for DML is unrelated to any matters relating to marine licensing. e) The overall effect on the ability of the MMO to enforce the marine licensing regime in respect of any transferred or granted DML.</p>	<p>This is noted by the Applicant. The Applicant is currently reviewing the draft DCO/ DML and a response including an updated version of Application Document 3.1 (F) Draft Development Consent Order [REP3-006] will be submitted at a later deadline.</p>
3.3 cont.	Previous DCOs	<p>It is acknowledged that DCO's previously granted have removed the effect of s72 of the 2009 Act and made provision for the transfer of DMLs including by way of example, Sheringham Shoal and Dudgeon Extensions Offshore Wind Farm, Times Tideway Tunnel DCO and Sizewell C DCO. The MMO has consistently challenged provisions of this nature in draft DCOs as the existing statutory procedure is to be preferred to mitigate risk on all parties by using established mechanisms. For instance, the MMO has contested this in the recent Sheringham Shoal and Dudgeon Extensions Offshore Wind Farm (OWF) DCO, Rampion 2 OWF</p>	<p>This is noted by the Applicant. The Applicant is currently reviewing the draft DCO/ DML and a response including an updated version of Application Document 3.1 (F) Draft Development Consent Order [REP3-006] will be submitted at a later deadline.</p>

DCO, Immingham Green Energy Terminal DCO and the Immingham Eastern Ro-Ro Terminal.

The MMO notes that very few if any of the relevant Examining Authorities ("ExAs") of these projects explain the rationale for the approach adopted. The same is true of the relevant decision letters. The MMO requests that the Applicant provides the MMO with any ExA Report or Decision letter which explains why the approach it seems to adopt in the dDCO is appropriate or indeed to be preferred to the existing statutory procedures.

The MMO, of course, accepts that there is a need for consistency in decision making. However, a decision maker is not bound by previous decisions and can depart from them where there is good reason to do so.

If the Secretary of State in the present case determined that on balance, the existing statutory mechanisms relating to transfer of marine licences is to be preferred to the mechanism proposed in the dDCO, then it is open to him to so determine provided he gives reasons for so doing. The absence of any reasoned decision which determines the point previously and which provides a rationale for departing the existing statutory mechanism is a reason to look at this issue again.

3.3 cont.

Materially Inferior Procedure

As explained above, the statutory system for transfer requires an application to the MMO. There is no further consultation, and the transfer is given effect by amendment to the licence holder section of the Marine Licence. The MMO does not have any relevant statutory or non-statutory policy relating to the transfer of a licence – it is essentially a purely administrative act to ensure that the licence contains the name of the person with the benefit of the licence. As explained, as far as the MMO is concerned it has never refused an application for a transfer.

In contrast, the dDCO Article 7 procedure requires:

1. Pre-application consultation with the Secretary of State;
2. An application to the Secretary of State;
3. Consultation with the MMO;
4. A decision by the Secretary of State;
5. Notification of the decision;

Given the contrast between the two procedures, the MMO does not consider that the dDCO procedure has any material procedural or administrative advantages over the existing statutory process. Indeed, the dDCO procedure is decidedly more complex, is more administratively burdensome for all parties, and will take longer to give effect to a transfer. The MMO believes that as a result the dDCO should be amended to remove the mechanisms to enable

This is noted by the Applicant. The Applicant is currently reviewing the draft DCO/ DML and a response including an updated version of **Application Document 3.1 (F) Draft Development Consent Order [REP3-006]** will be submitted at a later deadline.

		transfer of the DMLs and to remove the exclusion of the existing s72 process; the statutory regime which already exists is a much better option for all and should remain applicable.	
3.4	Schedule 16 – Deemed Marine Licence	The MMO head office has now changed and the address should be updated to:	This is noted by the Applicant. The Applicant will make this change in the next version of Application Document 3.1 (F) Draft Development Consent Order [REP3-006] and will submit this at a later deadline.
	Definitions	Marine Licensing Tyneside House Skinnerburn Road Newcastle Business Park Newcastle upon Tyne NE4 7AT	
3.5	Schedule 16 – Deemed Marine Licence	The MMO notes that this condition as written applies to any timeframe within the DML. The MMO is currently reviewing this condition as there may be statutory deadlines that have fixed timescales. Furthermore, the wording is not included in a standard marine licence and the MMO does not consider it necessary. All conditions within the DML should include all information relevant to that condition, including in relation to time periods.	This is noted by the Applicant and awaits a further update from the MMO for review.
3.6	Schedule 16 – Deemed Marine Licence	The MMO does not consider that this provision is necessary as Section 86 of Marine and Coastal Access Act 2009 (MCAA) provides a defence for action taken in an emergency in breach of any licence conditions. The MMO requires justification or rationale as why this provision is considered necessary. It is not something that the MMO would include in standalone marine licences. PINS own Guidance Note 11 says that DMLs should be broadly consistent with standalone marine licences.	This is noted by the Applicant and it is our understanding that this provision may be captured on other legislation and therefore may not need duplicating within the DML.
	Force Majeure	The MMO understands that Force Majeure is about events, situations and circumstances that arise which are outside of a person's control. Currently the condition wording used is drafted to apply for stress of weather or any other cause which is very broad. It could cover anything, including causes which are entirely within the master's control such as negligence matters. Currently the MMO believes Condition 9 in Schedule 16 does not meet the five tests as set out in the National Planning Policy Framework for a number of reasons: <ul style="list-style-type: none">• Necessary;• Relevant to planning;• Relevant to the development to be permitted;• Enforceable;• Precise; and• Reasonable in all other respects.	The Applicant will review the inclusion of this provision and provide an update at Deadline 5.
3.6 cont.	Schedule 16 – Deemed Marine Licence	Section 86(1)(b) and 86(2) of MCAA, for the defence to be relied on, states that the person relying on it must inform the MMO that	This is noted by the Applicant. The Applicant is currently reviewing the draft DCO/ DML and a response including an updated version of

	Force Majeure – Necessary	the act was carried out, tell it where it was carried out, the circumstances in which it was carried out, and what articles/objects were concerned. The inclusion of Condition 9 in Schedule 16 removes this defence and replaces it with a wider and less stringently controlled authorisation to deposit articles/substances and the MMO does not believe this is necessary.	Application Document 3.1 (F) Draft Development Consent Order [REP3-006] will be submitted at a later deadline.
3.6 cont.	Schedule 16 – Deemed Marine Licence	The condition as it stands is too subjective and therefore unenforceable and this due to the fact that it is down to the master to determine whether it is necessary to make the deposit and there are no defined criteria.	This is noted by the Applicant. The Applicant is currently reviewing the draft DCO/ DML and a response including an updated version of Application Document 3.1 (F) Draft Development Consent Order [REP3-006] will be submitted at a later deadline.
3.6 cont.	Force Majeure – Enforceable		
3.6 cont.	Schedule 16 – Deemed Marine Licence	The condition is also not restricted to Force Majeure situations or 'no fault situations', due to the inclusion of 'any other cause'. The MMO questions this wording and why this has been included?	This is noted by the Applicant. The Applicant is currently reviewing the draft DCO/ DML and a response including an updated version of Application Document 3.1 (F) Draft Development Consent Order [REP3-006] will be submitted at a later deadline.
3.6 cont.	Force Majeure – Precise		
3.6 cont.	Schedule 16 – Deemed Marine Licence	The test set in Condition 9 in Schedule 16 must be met to allow these deposits to be made is a much lower threshold test to that set in Section 86 of MCAA. This is because the safety of human life and/or the vessel is threatened is not the same as for the purpose of saving life or securing the safety of the vessel. The MMO questions why these masters and vessels be treated more favourably than others in this situation?	This is noted by the Applicant. The Applicant is currently reviewing the draft DCO/ DML and a response including an updated version of Application Document 3.1 (F) Draft Development Consent Order [REP3-006] will be submitted at a later deadline.
	Force Majeure – Reasonable	<p>The inclusion of 'The unauthorised deposits must be removed at the expense of the undertaker unless written approval is obtained from the MMO', also goes against the MMO's regulations. This is because the MMO would not be able to give permission for the removal of the deposit without a marine licence and if this incident occurred outside the red line boundary this would not be included within the DML. In addition to this there would not be an exemption as the deposit would not be classed as accidental.</p> <p>To summarise the MMO does not agree with the Applicant's reasons for including this provision. The condition should be removed, as the defence (Section 86 of MCAA) will apply if the Applicant or vessel masters needs to make a deposit for a Force Majeure reason.</p>	

References

Gubbay, S. 2007. Defining and managing *Sabellaria spinulosa* reefs: Report of an inter-agency workshop 1-2 May 2007. Peterborough: Joint Nature Conservation Committee (JNCC).

Jenkins, C., Eggleton, J., Barry, J., and O'Connor, J. 2018. Advances in assessing *Sabellaria spinulosa* reefs for ongoing monitoring. *Ecology and Evolution*, 8(15), 7673-7687.

Mawson, C.H., Webster, A., Fitzpatrick, J. and Ruesink, J.L. 2026. Direct and indirect ecosystem responses to vehicle compaction of soft sediments. *Marine Environmental Research*, 107746.

Parker, J., Banks, A., Fawcett, A., Axelsson, M., Rowell, H., Allen, S., Ludgate, C., Humphrey, O., Baker, A., Copley, V., Farmer, R. and Foote, Y. 2025a. Offshore Wind Marine Environmental Assessments: Best Practice Advice for Evidence and Data Standards. Phase I: Expectations for pre-application baseline data for designated nature conservation and landscape receptors to support offshore wind applications. Natural England. Version 2. 79 pp.

Tillin, H.M., Watson, A., Tyler-Walters, H., Mieszkowska, N. and Hiscock, K. 2022. Defining Marine Irreplaceable Habitats: Literature review. NECR474. Natural England.

Appendix A Natural England Air Quality Technical Note

Appendix A Natural England Air Quality Technical Note

A.1 Introduction

A.1.1 This Technical Note has been prepared in response to Natural England's advice provided at Deadline 3 (see **Application Document Appendix B3 Natural England's Advice on Kent Onshore [REP3-117]**) in relation to **Application Document 6.6 (E) Habitats Regulations Assessment Report [REP3-028]**. In their submission of **Application Document Appendix B3 Natural England's Advice on Kent Onshore [REP3-117]**, Natural England refers the Applicant to Annex 1: Standard Advice for Air Quality Impacts in Nationally Significant Infrastructure Projects (NSIPs), referred to hereafter as 'Natural England's standard advice'. Natural England has confirmed that the air quality related aspects of the Habitat Regulations Assessment (HRA) arising from the Proposed Project can be addressed using this standard advice and requested that the Applicant demonstrates how the advice has been taken into account.

A.1.2 This Technical Note demonstrates how the air quality assessments undertaken for the Kent Onshore Scheme and Suffolk Onshore Scheme with regards to impacts on designated sites, comply with Natural England's standard advice. This is with specific reference to construction dust emissions, Non-Road Mobile Machinery (NRMM) emissions, back-up generator emissions and emissions from construction and operational traffic.

A.2 Natural England Advice

A.2.1 **Appendix Table A.1 Summary of Natural England's Sequential Approach to Air Quality Assessments** summarises the sequential approach to assessing air quality impacts on designated sites, as set out in Natural England's standard advice.

Appendix Table A.1 Summary of Natural England's Sequential Approach to Air Quality Assessments

Stage	Step	
Initial screening for credible risk of an effect	1	Check Distance criteria - could significant emissions reach a protected site? Yes = move to Step 2. No = no further HRA required.
	2	Check if the qualifying habitats or supporting habitat of qualifying species are sensitive to air quality impacts. Yes = move to Step 3. No = no further HRA required
Detailed air quality modelling	3	Undertake detailed modelling using a recognised dispersal model – i.e. Atmospheric Dispersion Modelling System (ADMS) including relevant scenarios that are

		clearly identified. At least 3 years of meteorological data should be included within the air quality modelling for sources other than for road transport modelling
Applying screening thresholds	4a	<p>Ascertain the Process Contribution (PC) from the plan or project (emissions and predicted deposition). Apply screening threshold (1% of critical level or load) alone using the annual averages. If the PC is less than 1% of the relevant long-term benchmark (Environmental Assessment Level, Critical Level or Critical Load), the emission is not likely to have a significant effect alone irrespective of the background levels.</p> <p>If below threshold alone, move to Step 4b. If above = move straight to Step 5</p>
	4b	<p>Apply Screening Threshold In-combination.</p> <p>If the combined process contribution is less than 1% of the relevant long-term benchmark (Environmental Assessment Level, Critical Level or Critical Load), the emission is not likely to have a significant effect in-combination irrespective of background levels.</p> <p>If below threshold in-combination = no likely significant effect/significant risk of damage etc and no further assessment required. If above = move straight to Step 5.</p>
Detailed assessment of ecological impacts	5	This step is to consider the ecological impacts of air quality on the interest features of the designated site and is not based only on numerical figures. If Habitats Sites are impacted by the proposals, move to Step 6.
Appropriate Assessment (AA) for habitats sites	6	The competent authority to undertake their AA to conclude whether or not there will be an Adverse Effect on Integrity (AEOI) of habitats sites. Any mitigation proposed should also be assessed at this point. Should the AA conclude that the proposal would have an AEOI that cannot be excluded with mitigation measures, consider the derogation route of the HRA process.

A.3 Construction Dust Emissions

Suffolk and Kent

A.3.1 Construction dust emissions for the Suffolk and Kent Onshore Schemes were assessed in **Application Document 6.2.2.8 Part 2 Suffolk Chapter 8 Air Quality [APP-055]** and **Application Document 6.2.3.8 Part 3 Kent Chapter 8 Air Quality [APP-068]**, respectively. These assessments were supported by the respective construction dust assessment and methodology appendices for Suffolk and Kent (**Application Document 6.3.2.8.A ES Appendix 2.8.A Construction Dust Assessment and Methodology**

[APP-132] and 6.3.3.8.A ES Appendix 3.8.A Construction Dust Assessment and Methodology [APP-185], respectively).

A.3.2 The assessments were undertaken in accordance with the Institute of Air Quality Management (IAQM) construction dust guidance (IAQM, 2024). Although the IAQM guidance is structured differently from Natural England's standard advice, it follows the same sequential principles of initial screening, receptor sensitivity identification, application of mitigation, and professional judgement to determine whether a credible risk of effect remains.

A.3.3 In accordance with Step 1 of Natural England's standard advice, distance-based screening was undertaken to determine whether construction dust emissions could affect designated sites. The IAQM screening criteria (IAQM, 2024) were applied, whereby the presence of human receptors within 250 m of the Order Limits or 50 m of construction vehicle routes (up to 250 m from bellmouths) triggers the need for further consideration. At the request of Natural England, the same 250 m screening distance was applied to ecological receptors, including designated sites, to ensure a precautionary approach.

A.3.4 Designated sites within the screening distances were identified for both the Kent and Suffolk Onshore Schemes, as reported in **Table 1.9 of Application Document 6.3.2.8.A ES Appendix 2.8.A Construction Dust Assessment and Methodology [APP-132]** and **Table 1.9 of 6.3.3.8.A ES Appendix 3.8.A Construction Dust Assessment and Methodology [APP-185]**. These sites include habitats potentially sensitive to dust. As sensitive ecological receptors were identified within the screening area, the assessment progressed beyond initial screening, consistent with Step 2 of Natural England's standard advice.

A.3.5 For construction dust, Steps 3 and 4 of Natural England's standard advice (which relate primarily to quantitative dispersion modelling and numerical screening thresholds) are not directly applicable, as construction dust effects cannot be robustly assessed using detailed dispersion modelling. Instead, the IAQM guidance (IAQM, 2024) provides an accepted qualitative, risk-based framework for assessing dust effects and defining appropriate mitigation. Accordingly, construction dust assessments were undertaken to determine the appropriate level of mitigation required to control emissions and avoid significant effects on nearby receptors, including designated sites.

A.3.6 Based on the application of high-risk construction dust mitigation measures (**Table 1.15 of Application Document 6.3.2.8.A ES Appendix 2.8.A Construction Dust Assessment and Methodology [APP-132]** and **Table 1.15 of 6.3.3.8.A ES Appendix 3.8.A Construction Dust Assessment and Methodology [APP-185]**), secured through the Outline Code of Construction Practice (**Application Document 9.83 Outline Code of Construction Practice [REP3-076]**), the temporary effects of construction dust emissions on designated sites are predicted to be not significant for both the Kent and Suffolk Onshore Schemes. The assessment therefore demonstrates that there is no credible risk of an adverse effect on designated sites from construction dust emissions, consistent with Natural England's standard advice, and no further assessment (including Appropriate Assessment) is required.

A.3.7 The construction dust assessments have informed the assessment of ecological receptors reported in **Application Document 6.2.2.2 (C) Part 2 Suffolk Chapter 2 Ecology and Biodiversity [REP1-047]**, **Application Document 6.2.3.2 (D) Part 3 Kent Chapter 2 Ecology and Biodiversity [REP1-049]** and **Application Document 6.6 (E) Habitats Regulations Assessment Report (REP3-028)**.

A.4 Construction Vehicle Emissions

Suffolk

A.4.1 As detailed in **Application Document 6.2.2.8 Part 2 Suffolk Chapter 8 Air Quality [APP-055]**, detailed modelling of construction vehicle emissions was undertaken within the former Stratford St Andrew Air Quality Management Area (AQMA) because the IAQM and Environmental Protection UK (EPUK) Development Control screening criteria (EPUK & IAQM, 2017), which are applicable to human receptors, were exceeded. Under this guidance, a more detailed assessment is triggered where the project-only change in traffic flows exceeds:

- Light-duty vehicles (LDVs) – more than 100 Annual Average Daily Traffic (AADT) within or adjacent to an AQMA or more than 500 AADT elsewhere; or
- Heavy-duty vehicles (HDVs) – more than 25 AADT within or adjacent to an AQMA or more than 100 AADT elsewhere.

A.4.2 Vehicle emissions modelling was therefore undertaken to assess potential effects on human health in the AQMA. There are no designated sites within 200m of the modelled road network.

A.4.3 Screening for designated ecological sites was undertaken separately using the Design Manual for Roads and Bridges (DMRB) LA 105 guidance (National Highways, 2024) and Natural England NE001 (Natural England, 2018) guidance. Under this guidance, further assessment is only required where project-related changes exceed 1,000 AADT or 200 HDVs (AADT) on routes within 200 m of a designated site.

A.4.4 Vehicle numbers as a result of the Proposed Project for the Suffolk Onshore Scheme are well below the DMRB/NE001 screening thresholds on all construction routes. The route that is adjacent to Sandlings Special Protection Area (SPA) and Leiston – Aldeburgh Site of Special Scientific Interest (SSSI), and 87 m from Crag Pit, Aldeburgh SSSI (link S-RL13) is predicted to have peak Annual Average Daily Traffic (AADT) construction flows as a result of the Proposed Project of 6 LDVs and 2 HDVs, which is far below the screening thresholds. The route that is 94 m from Aldeburgh Brick Pit SSSI (link S-RL11) is predicted to have peak AADT construction flows as a result of the Proposed Project of 16 LDVs and 14 HDVs, which again is far below the screening criteria. There are no other statutory designated ecological sites within 200 m of the construction routes for the Suffolk Onshore Scheme.

A.4.5 As such, no further assessment of construction vehicle emissions was undertaken, in accordance with Step 1 of Natural England's standard advice.

Kent

A.4.6 As detailed in **Application Document 6.2.3.8 Part 3 Kent Chapter 8 Air Quality [APP-068]** and **Application Document 6.3.3.8.B ES Appendix 3.8.B Air Quality Modelling Methodology [APP-186]**, detailed modelling of vehicle emissions at designated sites has been undertaken.

A.4.7 In accordance with Step 1 of Natural England's standard advice, DMRB/NE001 screening thresholds were applied by identifying designated sites located within 200 m of the affected road network, consistent with Natural England's guidance for road traffic emissions. Although traffic flows associated with the Kent Onshore Scheme were below the DMRB/NE001 screening thresholds (1000 AADT or 200 HDV), detailed dispersion

modelling was undertaken for human receptors due to exceedances of the more stringent IAQM and EPUK Development Control screening criteria (500 LDV or 100 HDV, outside of an AQMA), and therefore designated sites within 200 m of the modelled road network were included as a precaution. These included Sandwich Bay to Hacklinge Marshes SSSI, Sandwich & Pegwell Bay National Nature Reserve (NNR) and Thanet Coast & Sandwich Bay SPA and Ramsar as, in accordance with Step 2 of Natural England's standard advice, these sites have been identified as being sensitive to air pollution, primarily due to the presence of nitrogen-sensitive coastal and estuarine habitats (Centre for Ecology and Hydrology, 2026).

- A.4.8 The modelling compared the Do-Nothing and Do-Something scenarios for the worst case construction year and predicted a change of 0.0 $\mu\text{g}/\text{m}^3$ in oxides of nitrogen (NOx) concentrations at all assessed designated site receptors.
- A.4.9 The modelled PC of 0.0 $\mu\text{g}/\text{m}^3$ indicates no measurable increase at the designated sites (i.e., the PC is zero). This is well below Natural England's standard advice Step 4a screening threshold of 1% of the relevant critical level/critical load and therefore cannot give rise to a likely significant effect alone. In line with Step 4b, a zero contribution also means there is no meaningful increment to aggregate with other plans or projects (i.e., no plausible in-combination effect). Consequently, progression to Step 5 (detailed ecological impact assessment) is not required.
- A.4.10 Natural England's standard advice states that "Applicants might use the Joint Nature Conservation Committee (JNCC) 'decision-making thresholds' as a reason for not completing an in-combination assessment". The JNCC guidance (JNCC, 2021) confirms that where a project's contribution is below decision-making thresholds, and where further assessment would not reasonably influence the outcome of the decision-making process, such contributions can be properly ignored, including for in-combination considerations. In this case, the zero contribution from the Proposed Project alone provides no pathway for in-combination effects to arise.
- A.4.11 On this basis, the decision not to undertake a further in-combination assessment of vehicle emission effects is proportionate, evidence-led and consistent with both Natural England's standard advice and the JNCC guidance (JNCC, 2021).

A.5 Operational Vehicle Emissions

Suffolk and Kent

- A.5.1 As stated in **Application Document 6.2.2.8 Part 2 Suffolk Chapter 8 Air Quality [APP-055]** and **Application Document 6.2.3.8 Part 3 Kent Chapter 8 Air Quality [APP-068]**, during the operational and maintenance phase the Proposed Project will be staffed by a limited number of operatives across the site, with additional infrequent trips associated with maintenance/inspections or repairs when required. Vehicle flows associated with the Proposed Project would therefore be well below the DMRB/NE001 screening thresholds (1000 AADT or 200 HDV). As such, no further assessment of operational vehicle emissions was undertaken, in accordance with Step 1 of Natural England's standard advice.

A.6 Non-Road Mobile Machinery Emissions

Suffolk

A.6.1 A re-assessment of NRMM emissions has been undertaken in accordance with the initial screening stage of Natural England's standard advice, adopting a 500 m study area around the proposed construction compounds, Friston Substation and Saxmundham Converter Station site to identify designated ecological sites with the potential to be affected by construction NRMM emissions.

A.6.2 The following ecological receptors are within 500 m of the proposed construction compounds, Friston Substation and Saxmundham Converter Station site

- Sandlings SPA and Leiston – Aldeburgh SSSI are 25 m to the north of the landfall compound, Aldringham to Aldeburgh Disused Railway Line Wildlife Site is just less than 10 m to the east and Aldeburgh Golf Course Wildlife Site is 412 m to the south west;
- Great Wood Ancient Woodland and Wildlife Site is 226 m to the north east of the compound to the north of Friston reservoir;
- Grove Wood Ancient Woodland Wildlife Site which is 480 m to the north of the compound off the B1069, and 309 m to the south east of the Friston Substation compound; and
- Benhall Green Meadows Wildlife Site which is 197 m to the south of the B1121 compound.

A.6.3 The NRMM proposed for the Proposed Project are presented in **Application Document 6.3.1.4.B ES Appendix 1.4.B Construction Plant Schedule [APP-090]**. As shown in the schedule, the majority of proposed NRMM have a lower power output than the articulated lorries (350 kW), with just one piece of equipment, the wheeled mobile telescopic crane which has a higher power output (610 kW).

A.6.4 REAC commitment AQ09 (**Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078]**) requires NRMM to comply with Stage IV emission standards as a minimum. The Stage IV emission standard for NOx is 0.4 g/kWh, which is lower than the strictest NOx emission standard for Heavy Duty Vehicles (HDV) currently on the market (Euro VI, 0.46 g/kWh NOx). Therefore, it is considered appropriate to consider NRMM emissions no worse than HDV emissions in terms of NOx, given the similar size of engines.

A.6.5 As indicated in Application **Document 6.3.1.4.B ES Appendix 1.4.B Construction Plant Schedule [APP-090]**, the number of NRMM required for the Proposed Project is estimated to be 74 (note that this number includes dumper trucks and lorries which will have already been captured in the construction traffic data), which is well below the DMRB/NE001 screening thresholds (1000 AADT or 200 HDV). Additionally, these would be spread across the Order Limits and would not be operational all of the time as indicated in the final column of **Application Document 6.3.1.4.B ES Appendix 1.4.B Construction Plant Schedule [APP-090]**. This contrasts with the screening threshold, which applies to traffic movements on a single road within 200 m of a designated habitat, demonstrating that the scale and intensity of NRMM use is substantially lower than the scenario for which the threshold is intended.

A.6.6 Several control measures relating to NRMM emissions have been included in the outline CoCP (**Application Document 9.83 Outline Code of Construction Practice [REP3-076]**) including AQ04, AQ09 and GG10. Monitoring of nitrogen dioxide (NO₂), NOx, Particulate Matter less than 10 microns in diameter (PM₁₀) and Particulate Matter less than 2.5 microns in diameter (PM_{2.5}) is proposed at the boundaries of the construction compounds where there are receptors in close proximity to ensure the

measures are working effectively, as detailed in **Application Document 7.5.6.1 Outline Air Quality Management Plan - Suffolk [REP3-052]**. Monitoring locations include 'Suffolk 2' which is south of the B1121 compound and approximately 180 m north of the Benhall Green Meadows Wildlife Site, and 'Suffolk 4', which is just over 100m to the west of Aldringham to Aldeburgh Disused Railway Line Wildlife Site and Leiston – Aldeburgh SSSI, and 180 m south of Sandlings SPA.

A.6.7 Should monitored concentrations exceed the trigger thresholds (which would be established following a period of baseline monitoring), the construction activities would be reviewed and additional abatement controls implemented where required, or the site works may need to temporarily stop. New procedures or controls would be developed where problems continue to occur, and **Application Document 7.5.6.1 Outline Air Quality Management Plan - Suffolk [REP3-052]** would be updated if required.

A.6.8 Due to the number of NRMM proposed for the Proposed Project being below the DMRB/NE001 screening thresholds, the temporary and transient nature of NRMM operation and NRMM control measures, the use of construction NRMM is unlikely to result in significant effects on ecological sites within 500m of the construction compounds.

A.6.9 In line with step 1 of Natural England's standard advice, there is therefore no credible risk of an adverse effect on designated sites, and no further detailed modelling or in-combination assessment is required.

Kent

A.6.10 As detailed in **Table 2.33** within **Application Document 9.34.1 (B) Applicant's Comments on Relevant Representations Identified by the ExA [REP2-014]**, a re-assessment of NRMM emissions was undertaken, which is in accordance with the initial screening stage of Natural England's standard advice, adopting a 500 m study area around the proposed construction compounds, Minster Substation and Minster Converter Station to identify designated ecological sites with the potential to be affected by NRMM emissions.

A.6.11 Within this study area, the relevant designated sites are Sandwich Bay to Hacklinge Marshes SSSI, Sandwich Bay SAC and Thanet Coast & Sandwich Bay Ramsar and SPA, all of which were screened for proximity and sensitivity to air quality impacts.

A.6.12 The proposed NRMM fleet is set out in **ES Appendix 1.4.B Construction Plant Schedule [APP-090]**. The majority of plant has a lower power output than articulated HGVs, with only one item of higher-powered equipment. On this basis, NRMM emissions were conservatively screened against the DMRB/NE001 screening thresholds (1000 AADT or 200 HDV). The total number of NRMM proposed (74 items, including plant already captured within construction traffic data) is well below this screening threshold and would be spatially dispersed and temporally intermittent.

A.6.13 Embedded mitigation and control measures for NRMM emissions are secured through the outline CoCP (**Application Document 9.83 Outline Code of Construction Practice [REP3-076]**) (including measures AQ04, AQ09 and GG10). In addition, air quality monitoring is proposed at construction compound boundaries, including 'Kent 2' which is adjacent to Sandwich Bay to Hacklinge Marshes SSSI and 'Kent 4' which is 70 m from Sandwich Bay to Hacklinge Marshes SSSI, Sandwich Bay SAC and Thanet Coast & Sandwich Bay Ramsar and SPA, as set out in **Application Document 7.5.6.1 Outline Air Quality Management Plan – Kent [REP3-054]**, to verify the effectiveness of mitigation and enable adaptive management if required.

- A.6.14 Due to the number of NRMM proposed for the Proposed Project being below the DMRB/NE001 screening thresholds, the temporary and transient nature of NRMM operation and NRMM control measures, the use of construction NRMM is unlikely to result in significant effects on ecological sites within 500m of the construction compounds.
- A.6.15 In line with Step 1 of Natural England's standard advice, there is therefore no credible risk of an adverse effect on designated sites, and no further detailed modelling or in-combination assessment is required.
- A.6.16 This matches the conclusion drawn for NRMM in **Application Document 6.2.3.2 (D) Part 3 Kent Chapter 2 Ecology and Biodiversity [REP1-049]**.

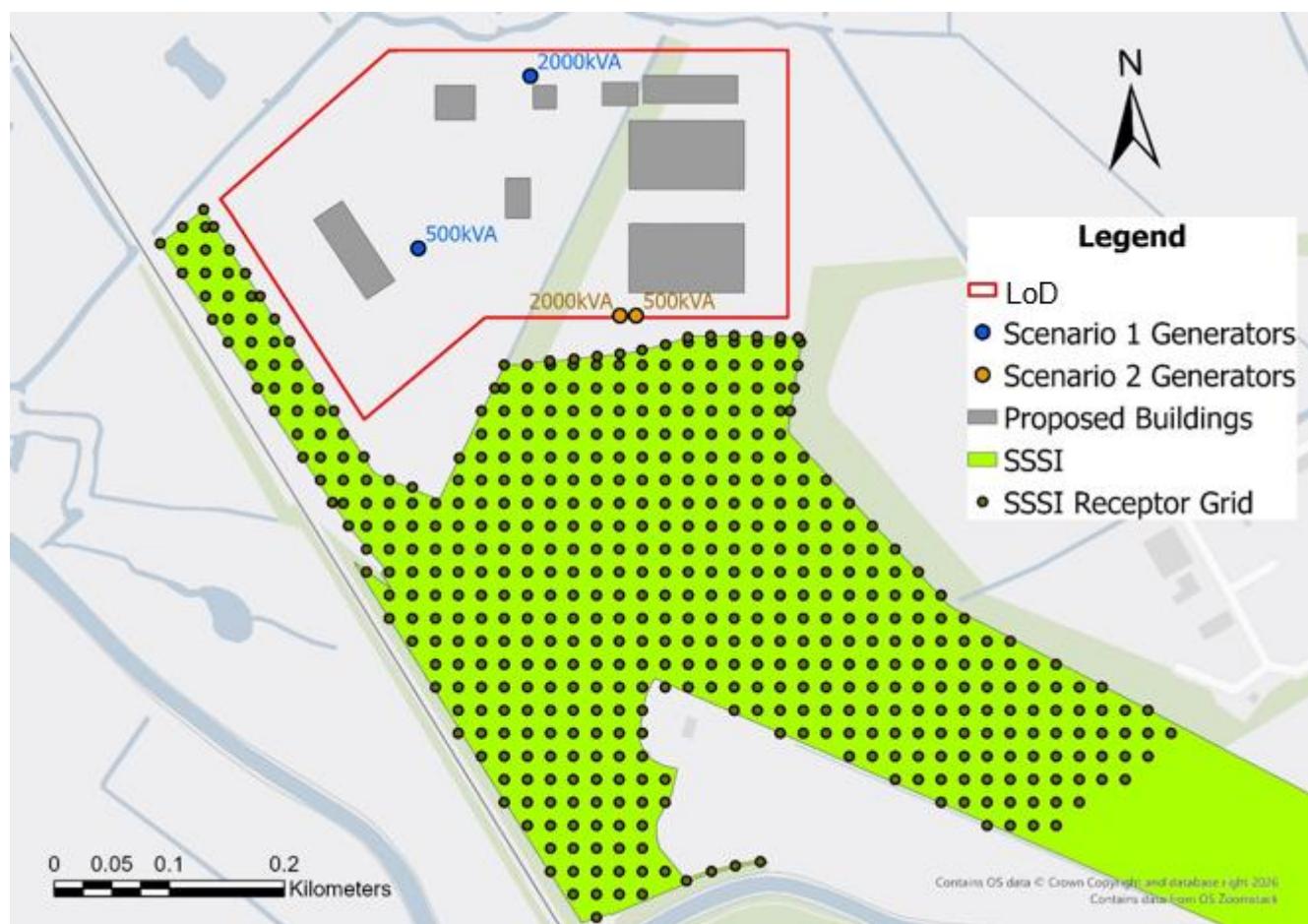
A.7 Back-Up Generator Emissions

Suffolk

- A.7.1 Grove Wood Wildlife Site is located approximately 325 m from the proposed Limit of Deviation (LoD) for the Friston Substation site. As set out in the assessment below for the Kent Onshore Scheme, detailed modelling indicates that the 1% criteria would not be exceeded at distances beyond 120 m from the generators. The modelling was undertaken on a conservative basis, assuming the operation of two generators side by side (500 kVA and 2000 kVA), whereas the Friston Substation would be equipped with a single 500 kVA back-up generator only. Given the substantially greater separation distance and the conservative nature of the modelling assumptions, emissions from the proposed back-up generator at the Friston Substation site would not result in significant effects at Grove Wood Wildlife Site.
- A.7.2 There are no designated ecological receptors within 500 m of LoD of the Saxmundham Converter Station site. On this basis, no effects on ecological receptors from back-up generator emissions from the Saxmundham Converter Station site are predicted.
- A.7.3 In line with Natural England's standard advice, there is therefore no credible risk of an adverse effect on designated sites, and no further detailed modelling or in-combination assessment is required.

Kent

Introduction


- A.7.4 The proposed substation and converter station are located less than 50 m from Sandwich Bay to Hacklinge Marshes SSSI. These stations would each include a single diesel generator to provide backup power during a grid power outage.
- A.7.5 Step 1 of Natural England's standard advice states that air quality impacts on SSSI's should be assessed if there are combustion process (under 20MW energy input) within 500 m. In accordance with Step 2 of Natural England's standard advice, Sandwich Bay to Hacklinge Marshes SSSI has been identified as being potentially sensitive to air quality impacts as it contains nitrogen-sensitive habitats (Centre for Ecology and Hydrology, 2026). Detailed air quality modelling of the impacts of backup generator emissions on the SSSI has therefore been undertaken in accordance with Step 3 of Natural England's standard advice. It should be noted that there are no other ecological designated sites located within the screening distances set out in Natural England's standard advice.

Methodology

A.7.6

It is proposed that a 500 kVA diesel generator is used at the substation, and a 2000 kVA generator is used at the converter station. The potential location for these generators is shown in **Application Document 2.13 Design and Layout Plans [APP-037]** for Kent, and is also presented as Scenario 1 Generators in **Appendix Plate A.1 Modelled Site Layout** below. **Appendix Plate A.1 Modelled Site Layout** also presents a worst case scenario (Scenario 2 Generators), with the diesel generators located where impacts would be greatest on the SSSI, i.e. at the southern boundary of the LoD for the proposed substation and converter station.

Appendix Plate A.1 Modelled Site Layout

A.7.7

Emissions from the generators would occur during maintenance and testing and in the very rare event of a loss of power. The assessment of emissions from the generators has been undertaken with due consideration of the Environment Agency's 'Air emissions risk assessment for your Environmental Permit' guidance (Environment Agency and Defra, 2026), which provides advice on assessing releases to air for sources of this nature. Modelling has been undertaken to predict pollutant concentrations resulting from maintenance and testing combined with potential power outage events.

Dispersion Model

A.7.8 Dispersion modelling was undertaken using ADMS-6 (v6.0.2.1), which is developed by Cambridge Environmental Research Consultants (CERC) Ltd and is accepted for the air quality assessment of point source releases within the UK by the Environment Agency, Defra and local authorities. ADMS-6 is a short-range dispersion modelling software package that simulates a wide range of buoyant and passive releases to atmosphere. It is a new generation model utilising boundary layer height and Monin-Obukhov (MO) length to describe the atmospheric boundary layer and a skewed Gaussian concentrations distribution to calculate dispersion under convective conditions.

A.7.9 The model utilises hourly meteorological data to define conditions for plume rise, transport and diffusion of pollutants. It estimates the concentration for each source and receptor combination for each hour of input meteorology and calculates user-selected long-term and short-term averages.

Air Quality Thresholds

A.7.10 Air pollution has the potential to affect ecological habitats in gaseous form or through deposition.

A.7.11 Critical levels are defined for gaseous pollutants which represent thresholds below which significant harmful effects are not thought to occur. The air quality critical levels for the protection of vegetation and ecosystems which are applicable to the assessment are shown in **Appendix Table A.2 Critical Levels for the Protection of Vegetation and Ecosystems**.

Appendix Table A.2 Critical Levels for the Protection of Vegetation and Ecosystems

Pollutant	Critical Level	Averaging Period
NO _x	30 µg/m ³ *	Annual Mean
	75 µg/m ³ (where ozone and sulphur dioxide > critical levels), 200µg/m ³ (where ozone and sulphur dioxide < critical levels)**	Daily Mean

* Critical level to protect vegetation and ecosystems defined in Air Quality Standards Regulations 2010.

** Daily mean NO_x critical level is a non-legal threshold derived from EA guidance (Environment Agency and Defra, 2026).

Ozone and sulphur dioxide concentrations are low across the UK, and the study area and so a daily mean NO_x critical level of 200 µg/m³ has been used in the assessment in line with the advice of IAQM guidance (IAQM, 2020).

A.7.1 For the deposition of air pollutants, critical loads are defined for nitrogen deposition and acid deposition, which similar to the critical levels, represent a threshold below which significant harmful effects are not thought to occur. These critical loads are given as a range and vary depending on the habitats present.

A.7.2 The relevant part of the SSSI (known as Weather Lees Hill) within 500 m of the proposed converter/substation area is woodland with heavily shaded waterbodies. This SSSI unit is designated for 'breeding birds of lowland open waters and their margins'. The Air Pollution Information System (APIS) provides a searchable database and information on pollutants and their impacts on habitats and species, including SSSI sites across the UK. APIS does not provide critical loads for the breeding bird feature, but the birds would have potential to be affected only by substantial changes to their habitat caused by large increases in nitrogen deposition.

A.7.3 Based on the advice of the project's ecologist, a lower nitrogen critical load of 10 kgN/ha/yr has been assigned to the SSSI, which is based on the habitat (woodland/reedbeds) of the breeding birds present. There are no acid deposition critical loads assigned to interest features of the SSSI on APIS, and the project's ecologist also confirmed that the bird interest feature of the SSSI unit would not be sensitive to acid deposition. There is therefore no requirement to consider acid deposition in this assessment.

Receptors

A.7.4 A receptor grid has been modelled across Sandwich Bay to Hacklinge Marshes SSSI, as shown in **Appendix Plate A.1 Modelled Site Layout**. The extent of the SSSI modelled includes the entire area within 500 m of the LoD for the proposed converter/substation. Additional receptor points were also added along the boundary of the SSSI. All receptor points were modelled at a height of 0 m.

Modelling Scenarios

A.7.5 Modelling has been undertaken for two design scenarios as below:

- **Scenario 1 - DCO Design:** diesel generator locations modelled as shown in **Application Document 2.13 Design and Layout Plan [APP-037]** for the Kent Onshore Scheme and shown in **Appendix Plate A.1 Modelled Site Layout**.
- **Scenario 2 - Worst-Case Design:** diesel generator locations modelled at the location where impacts would be greatest on the SSSI, i.e. at the southern boundary of the LoD for the proposed substation and converter station as shown in **Appendix Plate A.1 Modelled Site Layout**.

A.7.6 Scenario 2 has been modelled as the design and layout of the converter station and substation areas are not yet fixed, and so there is potential for the diesel generators to be located closer to the SSSI than indicated in the **Application Document 2.13 Design and Layout Plan [APP-037]**.

Assessment of Annual and Daily Mean Air Quality Thresholds

A.7.7 Air quality modelling has been undertaken to provide annual mean concentration and deposition outputs for comparison against the annual mean NO_x critical level and the annual mean critical load for nitrogen deposition. Furthermore, modelling of daily mean NO_x concentrations has been undertaken for comparison against the daily mean NO_x critical level.

A.7.8 Following Environment Agency guidance (Environment Agency and Defra, 2026), given that the diesel generators would not be operating continuously and instead would only operate during maintenance/testing and in a power failure, the annual and daily mean

model outputs have been factored down based on the likely hours per year/day that the generators would operate.

- A.7.9 For backup power, the Applicant has advised that backup generators are only expected to be required for black start or startup of the system, which is expected to last no longer than 1 hour.
- A.7.10 For comparison against annual mean thresholds, it has been assumed that the generators operate for the maximum 50 hours testing and maintenance per year, and that there would be an additional one-hour backup power required per month, which is considered worst-case.
- A.7.11 For comparison against the daily mean NO_x critical level, it has been assumed that the generators are tested on the same day that there is a power failure, which is considered to be worst-case.
- A.7.12 **Appendix Table A.3 Modelled Operational Hours and Scaling Factors** shows the operating hours assumed for comparison against the annual and daily mean air quality thresholds, and the corresponding scaling factors applied to the model outputs.

Appendix Table A.3 Modelled Operational Hours and Scaling Factors

Averaging Period	Operational Hours	Model Scaling Factor
Annual Mean	50 hours per year testing and maintenance	0.007 (equivalent to 62 / number of hours in a year i.e. 8760)
	12 hours per year for backup power	
Daily Mean	2 hours per day	0.083 (equivalent to 2/number of hours in a day i.e. 24)

- A.7.13 For the daily mean NO_x concentrations, maximum 1 hour mean NO_x concentrations have been predicted and then factored to a daily mean concentration using the scaling factor shown in **Appendix Table A.3 Modelled Operational Hours and Scaling Factors**.

Emission Parameters

- A.7.14 Information is currently not available on the technical specifications of the diesel generators that would be used, and so modelling has been undertaken using proxy parameters from engines of a similar size.
- A.7.15 The exhaust gas volumetric flow and temperature are based on typical technical specifications for a 2000 kVA (1600 kWe) and 500 kVA (400 kWe) diesel generator and are shown in **Appendix Table A.4 Generator Emission Parameters**.
- A.7.16 Information provided to Defra by the generator manufacturing industry indicate that unregulated diesel engines are likely to have NO_x emission rates of between 12 to 17 kg/MWhe (Environment Agency, 2016). The NO_x emissions assumed for each

generator have been calculated from the 17 kg/MWhe emission rate which is therefore likely to be at the high end of the scale in terms of potential emissions.

A.7.17 The generators are expected to be housed in standard 40 ft shipping containers (12.2 m (L) x 2.4 m (W) x 2.6 m (H)), and these structures have also been included in the model.

Appendix Table A.4 Generator Emission Parameters

Parameter	500 kVA Generator	2000 kVa Generator
Stack Height (m)	3.0	3.0
Stack Diameter (m)	0.20	0.40
Emission Temperature (°C)	524	509
Actual Flow Rate (m ³ /s)	1.32	5.50
Emission Velocity (m/s)	42.1	43.8
NO _x Emission Rate (g/s)	1.89	7.56

NO_x to NO₂ Conversion

A.7.18 The model predicts concentrations of NO_x, which comprise nitric oxide (NO) and NO₂. Most of the NO_x emitted from the generators will be in the form of NO and would subsequently be converted to NO₂ through reaction with oxidants such as ozone.

A.7.19 Concentrations of annual mean NO₂ used to calculate nitrogen deposition assume a 70% conversion from NO_x to NO₂. This is consistent with the UK Environment Agency guidance and is worst-case.

Background Concentrations and Deposition

A.7.20 Background annual mean NO_x concentrations and rates for nitrogen deposition vary spatially throughout the UK and were obtained from the APIS database (Centre for Ecology and Hydrology, 2026) based on the location of the receptors modelled.

A.7.21 The background concentration and deposition rate represent a three-year average (2020-2022), and for deposition, different rates are provided for short and tall vegetation habitats. The background deposition rates for tall vegetation (i.e. woodland) were assumed for the SSSI, as these are higher than for short vegetation and some of the habitat is woodland. The background concentrations/deposition derived was the same for all receptors modelled in the SSSI and is 9.6 µg/m³ for annual mean NO_x and 22.8 kg N/ha/yr for annual mean N deposition.

A.7.22 For daily mean background NO_x concentrations, the annual mean background NO_x concentration was doubled following Environment Agency guidance, and so a background concentration of 19.2 µg/m³ was assumed.

A.7.23 The daily mean and annual mean background NO_x concentrations are well below the annual (30 µg/m³) and daily mean (200 µg/m³) NO_x critical level, but the background N deposition rate exceeds the N critical load (10 kg N/ha/yr) assumed for the SSSI.

Nitrogen Deposition

A.7.24 The deposition of nitrogen is not directly modelled but can be derived from the NO₂ concentration predicted using a methodology derived from the EA's AQTAG06 guidance (Environment Agency, 2006).

A.7.25 The guidance details conversion factors which consider the difference in deposition velocities and mechanisms observed in woodlands and grasslands. Nitrogen deposition rates are higher for woodland than grassland, and deposition rates were calculated in the assessment assuming that the entire SSSI is woodland as worst-case.

A.7.26 A conversion factor of 0.29 (which is based on the receptor being trees) was applied to the annual mean NO₂ concentrations predicted from the model to convert from ug/m³ to a deposition rate of kg N/ha/yr. The calculated deposition rates were then added to the background N deposition rate derived from APIS to calculate total N deposition.

Meteorological Data

A.7.27 Meteorological data recorded at Manston Airport meteorological station was used for the air quality modelling as this was the closest, most appropriate station with good data capture for the desired time period. This meteorological station is located approximately 2.5 km north of the converter station/substation.

A.7.28 The Natural England's standard advice states that at least 3 years of meteorological data should be included for air quality modelling of sources other than road transport. This air quality modelling assessment has been undertaken using five years of meteorological data, from 2020 to 2024 inclusive. The meteorological data was obtained from Enviro Data Services which provided hourly meteorological data for each year.

A.7.29 A surface roughness of 0.3 m and minimum Monin-Obukhov length of 10 m was used to represent the predominantly agricultural/rural surroundings of the modelled study area. These parameters, which are determined by land use, influence wind patterns and atmospheric turbulence affect pollution dispersion. These values were selected as they were judged to be most representative of the predominant land use dispersion characteristics across the study area.

Terrain

A.7.30 Inclusion of terrain is recommended within the ADMS-6 user guide if the gradient within a modelling area varies by more than 10% (1 in 10). Terrain data has been incorporated into the model using 50m x 50m resolution terrain data from the Ordnance Survey (OS) OS Terrain 50 dataset.

Buildings

A.7.31 The dispersion of pollutants released from elevated sources can be influenced by the presence of buildings close to the emission point. These potential building effects on dispersion have been considered through use of the building module in ADMS 6.

A.7.32 Building input geometries used in the model were derived from **Application Document 2.13 Design and Layout Plans [APP-037]** for Kent and the buildings modelled are shown in **Appendix Plate A.1 Modelled Site Layout**

Determining Significance of Effects

A.7.33 The significance of effects has been determined following Natural England's standard advice and Natural England's 'Air pollution and development: advice for local authorities' (Natural England, 2026).

A.7.34 The process contribution (PC), which is the contribution of generator emissions to NOx and N deposition, has been compared against the corresponding critical level or load. Where the PC is less than 1% of the critical load or level then there would be no likely significant effect.

A.7.35 Where the PC exceeds 1% of critical load or level, the predicted environmental concentration (PEC), which is the PC plus background has been compared against the corresponding critical level or load. Where both the PC 1% threshold and PEC exceed the critical level or load, it can be concluded that there is potential for significant effects, and further evaluation of significance is required from an ecological point of view.

A.7.36 **Appendix Table A.5 Thresholds for Potential Significant Effects** summarises the PC and PEC thresholds that must be exceeded for the emissions to have potentially significant effects. If both thresholds are not exceeded for each pollutant then there would be no likely significant effect.

Appendix Table A.5 Thresholds for Potential Significant Effects

Pollutant	Threshold for comparison against PC	Threshold for comparison against PEC
Annual mean NO _x	0.3 µg/m ³	30 µg/m ³
Daily mean NO _x	2.0 µg/m ³	200 µg/m ³
N deposition	0.1 kg N/ha/yr	10 kg N/ha/yr

Assumptions and Limitations

A.7.37 Uncertainty in dispersion modelling predictions can be associated with a variety of factors, including:

- Model uncertainty – due to model limitations;
- Data uncertainty – due to uncertainties in input data, including emission estimates, operational procedures, land use characteristics and meteorology; and
- Variability – randomness of measurements used.

A.7.38 Potential uncertainties in the model results were minimised as far as practicable and worst-case inputs used in order to provide a robust assessment, including the following:

- Meteorological data – Modelling was undertaken using five annual meteorological data sets from an observation station local to the site to account for inter-year variability. The assessment was based on the worst-case year to ensure maximum concentrations were considered.
- Choice of model – ADMS-6 is a commonly used atmospheric dispersion model and results have been verified through a number of studies to ensure predictions are as accurate as possible.
- Surface characteristics – The surface roughness length and Monin-Obukhov length were determined for both the dispersion and meteorological sites based on the surrounding land uses and guidance provided by CERC.
- Generator locations – A worst case design scenario was included in the assessment, with diesel generator locations modelled at the location where impacts would be greatest on the SSSI.
- Generator emissions – Emissions were based on unregulated diesel engines, with an emission rate at the high end of the emissions scale for diesel generators.
- Operational hours – for annual mean calculations, it was assumed that there would be 12 power outage events per year and 50 hours testing of the generator per year. For daily mean calculations, it was assumed that a power outage event occurred on the same day as testing. These assumptions are expected to be worst-case.
- Receptor locations – The SSSI was modelled using a receptor grid covering the entire site within 500m of the redline boundary for the proposed converter/substation to ensure that the areas of greatest potential impact were captured by the model.
- Nitrogen deposition – The SSSI includes both tall (woodland) and short (reedbed) vegetation. Deposition rates are highest for tall vegetation, and deposition rates were calculated in the assessment assuming that the entire SSSI is woodland as worst-case.
- Variability – All model inputs were as accurate as possible and worst-case conditions were considered as necessary in order to ensure a robust assessment of potential pollutant concentrations.

Assessment of Effects

Scenario 1 DCO Design

A.7.39

The maximum impact of the generator emissions at each SSSI receptor point (across all five meteorological years) is presented in **Appendix Table A.8 Scenario 1 DCO Design - Full Receptor Grid Results**. **Appendix Table A.6 Maximum Impact on SSSI in Scenario 1** presents the maximum impact modelled anywhere in the SSSI. It should be noted that background NOx and N deposition do not change across the receptor grid, and so the PEC is always largest at the receptor point where the largest PC occurs.

Appendix Table A.6 Maximum Impact on SSSI in Scenario 1

Pollutant	Averaging Period	Critical Level or Load	Largest PC	PC as % of Critical Level or Load	Largest PEC	PEC as % of Critical Level or Load
NO _x (ug/m ³)	Annual Mean	30	0.2	<1%	9.8	33%
	Daily Mean	200	49.7	25%	68.9	34%
N Deposition (kg N/ha/yr)	Annual Mean	10	0.0	0%	22.8	228%

A.7.40 As shown in **Appendix Table A.6 Maximum Impact on SSSI in Scenario 1**, for annual mean NO_x, the largest PC predicted is less than 1% of the critical level and the largest PEC predicted is well below the critical level.

A.7.41 For daily mean NO_x, the largest PC predicted is 25% of the critical level, but the largest PEC predicted is well below the critical level.

A.7.42 For annual mean N deposition, the largest PC predicted is less than 1% of the critical load whilst the largest PEC predicted is above the critical load.

A.7.43 The results show that no area of the SSSI would exceed the critical level or load and also experience a change in NO_x or N deposition larger than 1% of the critical level or load as result of the generator emissions. There are therefore no likely significant effects on the SSSI in this scenario.

Scenario 2 Worst-Case Design

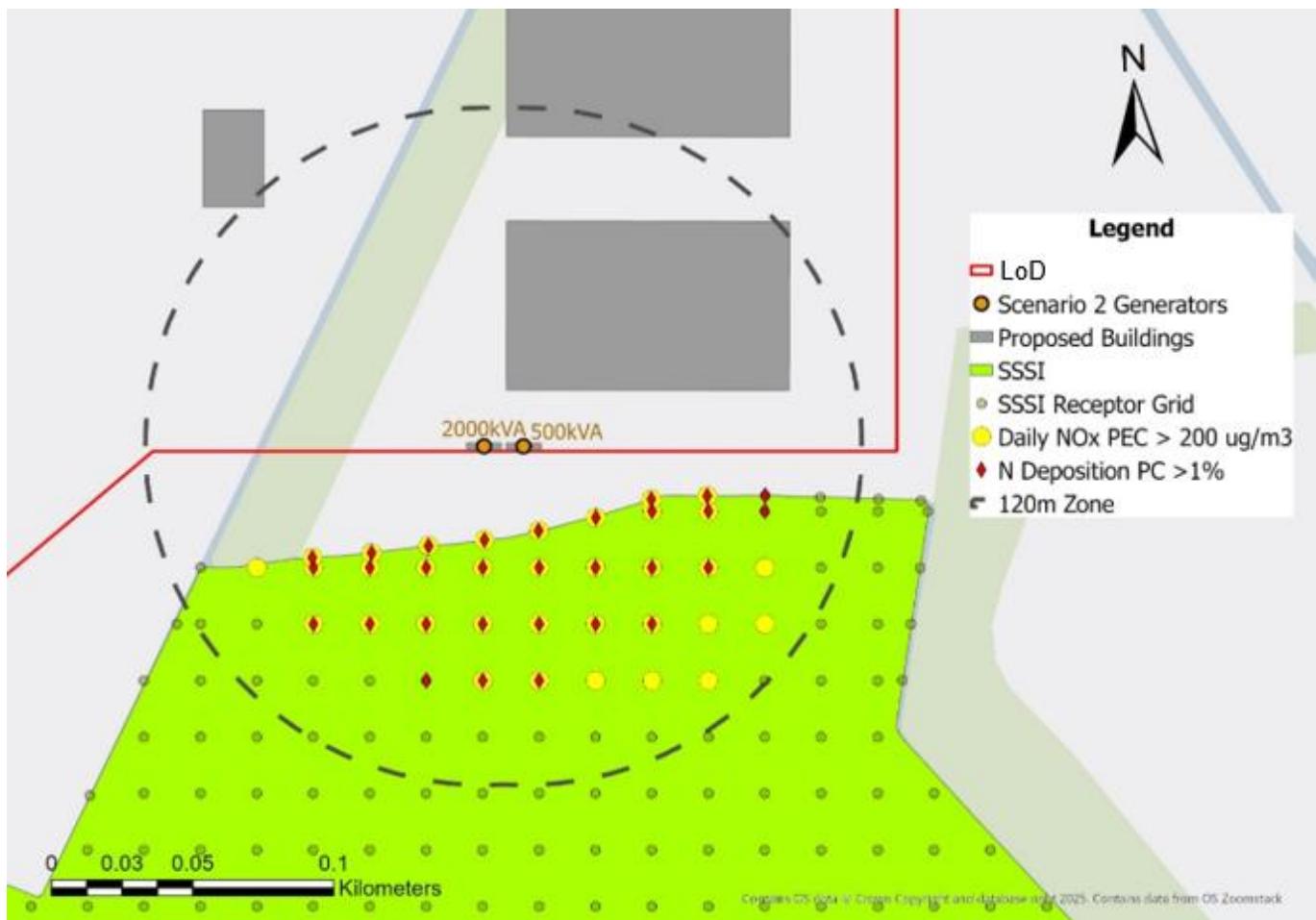
A.7.44 The maximum impact of the generator emissions at each SSSI receptor point (across all five meteorological years) is presented in **Appendix Table A.9 Scenario 2 Worst-Case Design - Full Receptor Grid Results**. **Appendix Table A.7 Maximum Impact on SSSI in Scenario 2** presents the maximum impact modelled anywhere in the SSSI. It should be noted that background NO_x and N deposition do not change across the receptor grid, and so the PEC is always largest at the receptor point where the largest PC occurs.

Appendix Table A.7 Maximum Impact on SSSI in Scenario 2

Pollutant	Averaging Period	Critical Level or Load	Largest PC	PC as % of Critical Level or Load	Largest PEC	PEC as % of Critical Level or Load
NO _x (ug/m ³)	Annual Mean	30	5.4	18%	15.0	50%
	Daily Mean	200	778.2	389%	797.4	399%

Pollutant	Averaging Period	Critical Level or Load	Largest PC	PC as % of Critical Level or Load	Largest PEC	PEC as % of Critical Level or Load
N Deposition (kg N/ha/yr)	Annual Mean	10	1.1	11%	23.9	239%

A.7.45 As shown in **Appendix Table A.7 Maximum Impact on SSSI in Scenario 2**, for annual mean NOx, the largest PC predicted is 18% of the critical level and the largest PEC predicted is well below the critical level.


A.7.46 For daily mean NOx, the largest PC predicted is 389% of the critical level, and the largest PEC predicted exceeds the critical level.

A.7.47 For annual mean N deposition, the largest PC predicted is less than 11% of the critical load and the largest PEC predicted is above the critical load.

A.7.48 The results show that if both generators were positioned close to the SSSI then there would be potential for significant air quality effects on the SSSI. The receptor grid for the SSSI has been used to determine how far from the generators there could be potentially significant effects. **Appendix Plate A.2 Area of Modelled Exceedance of Thresholds** shows the grid points where exceedances of the daily mean NOx critical level are predicted (Daily NOx PEC $> 200 \text{ ug/m}^3$), and where the N deposition PC exceeds the 1% critical load for N deposition.

A.7.49 The results show that the area of potential significant effects extends up to approximately 100 m from the generators, and so if the generators were positioned at least 120 m from the SSSI, there should be no significant effects. A 120 m zone around the generators is also presented in **Appendix Plate A.2 Area of Modelled Exceedance of Thresholds**, to help demonstrate this, as it shows there are no threshold exceedances within this area. This is also partly demonstrated by Scenario 1, as both generators are located more than 120 m from the SSSI, and there are no potentially significant effects on the SSSI when considering the thresholds in **Appendix Table A.5 Thresholds for Potential Significant Effects**.

Appendix Plate A.2 Area of Modelled Exceedance of Thresholds

A.7.50 In light of these modelling results, REAC commitment AQ11 (**Application Document 9.84 Register of Environmental Actions and Commitments (REAC) [REP3-078]**) has been updated to ensure backup generators are not placed within 120 m of the SSSI:

"To ensure emissions from the back-up generators during the operational phase are not significant:

- Ensure the generators adhere to Stage V emissions standards where possible and seek alternatives where possible, such as batteries or alternative fuel; and*
- Should diesel generators be used, ensure they are placed as far from Sandwich Bay to Hacklinge Marshes SSSI as possible (120m as a minimum) and that testing is kept to a minimum and no more than 50 hours per year."*

A.7.51 Following the adoption of this REAC commitment, no significant air quality effects are predicted to occur at Sandwich Bay to Hacklinge Marshes SSSI as a result of the use of backup diesel generators.

A.7.52 A review of current applications and consents has not identified any other relevant combustion sources within 500 m of Sandwich Bay to Hacklinge Marshes SSSI. Consequently, there is no additional PC to aggregate with the project's contribution, and no likely significant effect in-combination arises under Step 4b of Natural England's standard advice.

Summary of Air Quality Effects

- A.7.53 Detailed air quality modelling has been undertaken to predict the impact of emissions from backup diesel generators at the proposed Minster converter station and substation on Sandwich Bay to Hacklinge Marshes SSSI.
- A.7.54 The air quality assessment has been undertaken following Natural England's standard advice, and incorporates worst-case assumptions on the emissions, operational hours and meteorological conditions.
- A.7.55 The assessment shows that if the diesel generators are placed more than 120 m from the SSSI, as is the case in the most recent design, there would be no likely significant air quality effects on the SSSI. REAC commitment AQ11 has been updated to ensure that no generators are placed within 120 m of the SSSI.
- A.7.56 Following the adoption of this REAC commitment, no significant air quality effects are predicted to occur at Sandwich Bay to Hacklinge Marshes SSSI as a result of emissions from the backup diesel generators.

Appendix Table A.8 Scenario 1 DCO Design - Full Receptor Grid Results

Receptor	Easting	Northing	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)			Annual Mean NOx ($\mu\text{g}/\text{m}^3$)			Annual Mean N Deposition ($\text{kg N}/\text{ha}/\text{yr}$)				
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PEC as % CL	
SSSI_1	63237 7	16243 0	13. 8	7%		33.0	17%	0.0	0%	9.6	32%	0.0 %	22.8 %
SSSI_2	63235 7	16245 0	14. 2	7%		33.4	17%	0.0	0%	9.6	32%	0.0 %	22.8 %
SSSI_3	63237 7	16245 0	14. 5	7%		33.7	17%	0.0	0%	9.6	32%	0.0 %	22.8 %
SSSI_4	63239 7	16245 0	14. 5	7%		33.7	17%	0.0	0%	9.6	32%	0.0 %	22.8 %
SSSI_5	63241 7	16245 0	14. 9	7%		34.1	17%	0.0	0%	9.6	32%	0.0 %	22.8 %
SSSI_6	63233 7	16247 0	15. 0	8%		34.2	17%	0.0	0%	9.6	32%	0.0 %	22.8 %
SSSI_7	63235 7	16247 0	14. 7	7%		33.9	17%	0.0	0%	9.6	32%	0.0 %	22.8 %
SSSI_8	63237 7	16247 0	15. 2	8%		34.4	17%	0.0	0%	9.6	32%	0.0 %	22.8 %
SSSI_9	63239 7	16247 0	15. 2	8%		34.4	17%	0.0	0%	9.6	32%	0.0 %	22.8 %

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_10	63241 7	16247 0	15. 6	8%	34.8	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_11	63243 7	16247 0	15. 7	8%	34.9	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_12	63245 5	16246 2	15. 2	8%	34.4	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_13	63247 7	16247 0	15. 1	8%	34.3	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_14	63249 8	16247 5	15. 0	8%	34.2	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_15	63252 0	16247 9	14. 8	7%	34.0	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_16	63233 7	16249 0	15. 2	8%	34.4	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_17	63235 7	16249 0	15. 0	8%	34.2	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_18	63237 7	16249 0	15. 6	8%	34.8	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_19	63239 7	16249 0	15. 5	8%	34.7	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_20	63241 7	16249 0	16. 0	8%	35.2	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_21	63231 7	16251 0	15. 8	8%	35.0	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_22	63233 7	16251 0	15. 4	8%	34.6	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_23	63235 7	16251 0	15. 4	8%	34.6	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_24	63237 7	16251 0	15. 9	8%	35.1	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_25	63239 7	16251 0	15. 7	8%	34.9	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_26	63241 7	16251 0	16. 3	8%	35.5	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_27	63271 7	16251 0	15. 3	8%	34.5	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_28	63273 7	16251 0	15. 1	8%	34.3	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_29	63275 7	16251 0	14. 7	7%	33.9	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_30	63277 7	16251 0	14. 2	7%	33.4	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_31	63229 7	16253 0	16. 4	8%	35.6	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_32	63231 7	16253 0	16. 1	8%	35.3	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_33	63233 7	16253 0	15. 5	8%	34.7	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_34	63235 7	16253 0	15. 8	8%	35.0	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_35	63237 7	16253 0	16. 1	8%	35.3	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_36	63239 7	16253 0	15. 9	8%	35.1	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_37	63241 7	16253 0	16. 6	8%	35.8	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_38	63243 7	16253 0	16. 6	8%	35.8	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_39	63267 7	16253 0	15. 7	8%	34.9	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_40	63269 7	16253 0	15. 7	8%	34.9	17%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_41	63271 7	16253 0	15. 6	8%	34.8	17%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_42	63273 7	16253 0	15. 2	8%	34.4	17%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_43	63275 7	16253 0	14. 8	7%	34.0	17%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_44	63277 7	16253 0	14. 4	7%	33.6	17%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_45	63279 7	16253 0	14. 4	7%	33.6	17%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_46	63229 7	16255 0	16. 5	8%	35.7	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_47	63231 7	16255 0	16. 4	8%	35.6	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_48	63233 7	16255 0	15. 7	8%	34.9	17%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_49	63235 7	16255 0	16. 2	8%	35.4	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_50	63237 7	16255 0	16. 3	8%	35.5	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_51	63239 7	16255 0	16. 3	8%	35.5	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_52	63241 7	16255 0	16. 8	8%	36.0	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_53	63243 7	16255 0	16. 7	8%	35.9	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_54	63263 7	16255 0	16. 5	8%	35.7	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_55	63265 7	16255 0	16. 1	8%	35.3	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_56	63267 7	16255 0	16. 0	8%	35.2	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_57	63269 7	16255 0	16. 1	8%	35.3	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_58	63271 7	16255 0	15. 8	8%	35.0	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_59	63273 7	16255 0	15. 4	8%	34.6	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_60	63275 7	16255 0	14. 9	7%	34.1	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_61	63277 7	16255 0	14. 9	7%	34.1	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_62	63279 7	16255 0	14. 7	7%	33.9	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_63	63281 7	16255 0	14. 9	7%	34.1	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_64	63283 7	16255 0	14. 9	7%	34.1	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_65	63227 7	16257 0	16. 4	8%	35.6	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_66	63229 7	16257 0	16. 6	8%	35.8	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_67	63231 7	16257 0	16. 8	8%	36.0	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_68	63233 7	16257 0	16. 0	8%	35.2	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_69	63235 7	16257 0	16. 5	8%	35.7	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_70	63237 7	16257 0	16. 8	8%	36.0	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_71	63239 7	16257 0	16. 7	8%	35.9	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_72	63241 7	16257 0	17. 0	9%	36.2	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_73	63259 7	16257 0	16. 7	8%	35.9	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_74	63261 7	16257 0	17. 0	9%	36.2	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_75	63263 7	16257 0	16. 7	8%	35.9	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_76	63265 7	16257 0	16. 3	8%	35.5	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_77	63267 7	16257 0	16. 5	8%	35.7	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_78	63269 7	16257 0	16. 2	8%	35.4	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_79	63271 7	16257 0	16. 0	8%	35.2	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_80	63273 7	16257 0	15. 5	8%	34.7	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_81	63275 7	16257 0	15. 4	8%	34.6	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_82	63277 7	16257 0	15. 5	8%	34.7	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_83	63279 7	16257 0	15. 6	8%	34.8	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_84	63281 7	16257 0	15. 6	8%	34.8	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_85	63283 7	16257 0	15. 3	8%	34.5	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_86	63285 7	16257 0	15. 0	8%	34.2	17%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_87	63225 7	16259 0	16. 9	8%	36.1	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_88	63227 7	16259 0	16. 4	8%	35.6	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %
SSSI_89	63229 7	16259 0	16. 8	8%	36.0	18%	0.0	0%	9.6	32%	0.0 0 % 22.8 %

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_90	63231 7	16259 0	17. 1	9%	36.3	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_91	63233 7	16259 0	16. 6	8%	35.8	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_92	63235 7	16259 0	16. 9	8%	36.1	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_93	63237 7	16259 0	17. 2	9%	36.4	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_94	63239 7	16259 0	16. 9	8%	36.1	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_95	63241 7	16259 0	17. 3	9%	36.5	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_96	63253 7	16259 0	17. 3	9%	36.5	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_97	63255 7	16259 0	17. 5	9%	36.7	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_98	63257 7	16259 0	17. 3	9%	36.5	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %
SSSI_99	63259 7	16259 0	17. 3	9%	36.5	18%	0.0	0%	9.6	32%	0.0	0 %	22.8	228 %

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_100	632617	162590	17.2	9%	36.4	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_101	632637	162590	17.0	9%	36.2	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_102	632657	162590	16.9	8%	36.1	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_103	632677	162590	16.7	8%	35.9	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_104	632697	162590	16.6	8%	35.8	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_105	632717	162590	16.1	8%	35.3	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_106	632737	162590	15.9	8%	35.1	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_107	632757	162590	16.3	8%	35.5	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_108	632777	162590	16.2	8%	35.4	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_109	632797	162590	16.2	8%	35.4	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_11	63281	16259	15.0	8%	35.1	18%	0.0	0%	9.6	32%	0.0
0	7	0	9							0%	22.8%
SSSI_11	63283	16259	15.1	8%	34.8	17%	0.0	0%	9.6	32%	0.0
1	7	0	6							0%	22.8%
SSSI_11	63285	16259	15.2	8%	34.3	17%	0.0	0%	9.6	32%	0.0
2	7	0	1							0%	22.8%
SSSI_11	63287	16259	14.3	7%	33.9	17%	0.0	0%	9.6	32%	0.0
3	7	0	7							0%	22.8%
SSSI_11	63225	16261	17.4	9%	36.2	18%	0.0	0%	9.6	32%	0.0
4	7	0	0							0%	22.8%
SSSI_11	63227	16261	16.5	8%	35.7	18%	0.0	0%	9.6	32%	0.0
5	7	0	5							0%	22.8%
SSSI_11	63229	16261	17.6	9%	36.4	18%	0.0	0%	9.6	32%	0.0
6	7	0	2							0%	22.8%
SSSI_11	63231	16261	17.7	9%	36.5	18%	0.0	0%	9.6	32%	0.0
7	7	0	3							0%	22.8%
SSSI_11	63233	16261	17.8	9%	36.3	18%	0.0	0%	9.6	32%	0.0
8	7	0	1							0%	22.8%
SSSI_11	63235	16261	17.9	9%	36.7	18%	0.0	0%	9.6	32%	0.0
9	7	0	5							0%	22.8%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)			
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_120	632377	162610	17.5	9%	36.7	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_121	632397	162610	17.4	9%	36.6	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_122	632417	162610	17.6	9%	36.8	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_123	632497	162610	17.6	9%	36.8	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_124	632517	162610	17.6	9%	36.8	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_125	632537	162610	17.8	9%	37.0	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_126	632557	162610	17.7	9%	36.9	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_127	632577	162610	17.6	9%	36.8	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_128	632597	162610	17.7	9%	36.9	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_129	632617	162610	17.7	9%	36.9	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)			
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_13 0	63263 7	16261 0	17.2	9%	36.4	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_13 1	63265 7	16261 0	17.2	9%	36.4	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_13 2	63267 7	16261 0	17.2	9%	36.4	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_13 3	63269 7	16261 0	16.8	8%	36.0	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_13 4	63271 7	16261 0	16.7	8%	35.9	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_13 5	63273 7	16261 0	17.2	9%	36.4	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_13 6	63275 7	16261 0	16.9	8%	36.1	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_13 7	63277 7	16261 0	16.8	8%	36.0	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_13 8	63279 7	16261 0	16.6	8%	35.8	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_13 9	63281 7	16261 0	16.2	8%	35.4	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_14_0	63283_7	16261_0	15.7	8%	34.9	17%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_14_1	63285_7	16261_0	15.3	8%	34.5	17%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_14_2	63223_7	16263_0	16.9	8%	36.1	18%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_14_3	63225_7	16263_0	17.2	9%	36.4	18%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_14_4	63227_7	16263_0	16.7	8%	35.9	18%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_14_5	63229_7	16263_0	17.7	9%	36.9	18%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_14_6	63231_7	16263_0	17.7	9%	36.9	18%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_14_7	63233_7	16263_0	17.6	9%	36.8	18%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_14_8	63235_7	16263_0	18.0	9%	37.2	19%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_14_9	63237_7	16263_0	17.9	9%	37.1	19%	0.0	0%	9.6	32%	0.0
										0%	22.8%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_15 0	63239 7	16263 0	17.8	9%	37.0	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_15 1	63241 7	16263 0	18.1	9%	37.3	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_15 2	63243 7	16263 0	17.9	9%	37.1	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_15 3	63245 7	16263 0	18.1	9%	37.3	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_15 4	63247 7	16263 0	18.1	9%	37.3	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_15 5	63249 7	16263 0	18.1	9%	37.3	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_15 6	63251 7	16263 0	17.9	9%	37.1	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_15 7	63253 7	16263 0	18.1	9%	37.3	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_15 8	63255 7	16263 0	18.2	9%	37.4	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_15 9	63257 7	16263 0	17.9	9%	37.1	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_160	632597	162630	18.1	9%	37.3	19%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_161	632617	162630	17.8	9%	37.0	19%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_162	632637	162630	17.7	9%	36.9	18%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_163	632657	162630	17.8	9%	37.0	19%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_164	632677	162630	17.4	9%	36.6	18%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_165	632697	162630	17.5	9%	36.7	18%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_166	632717	162630	17.9	9%	37.1	19%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_167	632737	162630	17.6	9%	36.8	18%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_168	632757	162630	17.4	9%	36.6	18%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_169	632777	162630	17.2	9%	36.4	18%	0.0	0%	9.6	32%	0.0
										0%	22.8%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_17 0	63279 7	16263 0	16.8	8%	36.0	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_17 1	63281 7	16263 0	16.2	8%	35.4	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_17 2	63223 7	16265 0	17.2	9%	36.4	18%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_17 3	63225 7	16265 0	17.4	9%	36.6	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_17 4	63227 7	16265 0	17.2	9%	36.4	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_17 5	63229 7	16265 0	18.1	9%	37.3	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_17 6	63231 7	16265 0	18.2	9%	37.4	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_17 7	63233 7	16265 0	18.2	9%	37.4	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_17 8	63235 7	16265 0	18.4	9%	37.6	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_17 9	63237 7	16265 0	18.6	9%	37.8	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_180	632397	162650	18.5	9%	37.7	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_181	632417	162650	18.6	9%	37.8	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_182	632437	162650	18.6	9%	37.8	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_183	632457	162650	18.7	9%	37.9	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_184	632477	162650	18.4	9%	37.6	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_185	632497	162650	18.6	9%	37.8	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_186	632517	162650	18.3	9%	37.5	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_187	632537	162650	18.6	9%	37.8	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_188	632557	162650	18.3	9%	37.5	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_189	632577	162650	18.5	9%	37.7	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_19 0	63259 7	16265 0	18.3	9%	37.5	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_19 1	63261 7	16265 0	18.1	9%	37.3	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_19 2	63263 7	16265 0	18.4	9%	37.6	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_19 3	63265 7	16265 0	18.3	9%	37.5	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_19 4	63267 7	16265 0	18.6	9%	37.8	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_19 5	63269 7	16265 0	18.5	9%	37.7	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_19 6	63271 7	16265 0	18.3	9%	37.5	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_19 7	63273 7	16265 0	18.0	9%	37.2	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_19 8	63275 7	16265 0	17.8	9%	37.0	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_19 9	63277 7	16265 0	17.4	9%	36.6	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_200	632217	162670	18.0	9%	37.2	19%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_201	632237	162670	17.7	9%	36.9	18%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_202	632257	162670	17.6	9%	36.8	18%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_203	632277	162670	17.7	9%	36.9	18%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_204	632297	162670	18.5	9%	37.7	19%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_205	632317	162670	18.7	9%	37.9	19%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_206	632337	162670	18.9	9%	38.1	19%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_207	632357	162670	18.9	9%	38.1	19%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_208	632377	162670	19.0	10%	38.2	19%	0.0	0%	9.6	32%	0.0
										0%	22.8%
SSSI_209	632397	162670	19.1	10%	38.3	19%	0.0	0%	9.6	32%	0.0
										0%	22.8%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_21	63241	16267	18.0	9%	38.1	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
	0	7	0	9									0%	%
SSSI_21	63243	16267	19.1	10%	38.4	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
	1	7	0	2									0%	%
SSSI_21	63245	16267	19.2	10%	38.2	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
	2	7	0	0									0%	%
SSSI_21	63247	16267	19.3	10%	38.3	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
	3	7	0	1									0%	%
SSSI_21	63249	16267	19.4	10%	38.3	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
	4	7	0	1									0%	%
SSSI_21	63251	16267	19.5	10%	38.3	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
	5	7	0	1									0%	%
SSSI_21	63253	16267	19.6	10%	38.2	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
	6	7	0	0									0%	%
SSSI_21	63255	16267	19.7	10%	38.3	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
	7	7	0	1									0%	%
SSSI_21	63257	16267	18.8	9%	37.9	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
	8	7	0	7									0%	%
SSSI_21	63259	16267	18.9	9%	37.6	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
	9	7	0	4									0%	%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_22_0	63261_7	16267_0	18.8	9%	38.0	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_22_1	63263_7	16267_0	19.3	10%	38.5	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_22_2	63265_7	16267_0	19.4	10%	38.6	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_22_3	63267_7	16267_0	19.2	10%	38.4	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_22_4	63269_7	16267_0	19.1	10%	38.3	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_22_5	63271_7	16267_0	18.6	9%	37.8	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_22_6	63273_7	16267_0	18.4	9%	37.6	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_22_7	63219_7	16269_0	17.9	9%	37.1	19%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_22_8	63221_7	16269_0	18.6	9%	37.8	19%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_22_9	63223_7	16269_0	18.1	9%	37.3	19%	0.1	0%	9.7	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_23	63225	16269	18.0	9%	37.5	19%	0.1	0%	9.7	32%	0.0
0	7	0	3							0%	22.8%
SSSI_23	63227	16269	18.2	9%	37.4	19%	0.1	0%	9.7	32%	0.0
1	7	0	2							0%	22.8%
SSSI_23	63229	16269	19.1	10%	38.3	19%	0.1	0%	9.7	32%	0.0
2	7	0	1							0%	22.8%
SSSI_23	63231	16269	19.3	10%	38.5	19%	0.1	0%	9.7	32%	0.0
3	7	0	3							0%	22.8%
SSSI_23	63233	16269	19.4	10%	38.6	19%	0.1	0%	9.7	32%	0.0
4	7	0	4							0%	22.8%
SSSI_23	63235	16269	19.5	10%	38.7	19%	0.1	0%	9.7	32%	0.0
5	7	0	5							0%	22.8%
SSSI_23	63237	16269	19.7	10%	38.9	19%	0.1	0%	9.7	32%	0.0
6	7	0	7							0%	22.8%
SSSI_23	63239	16269	19.7	10%	38.9	19%	0.1	0%	9.7	32%	0.0
7	7	0	7							0%	22.8%
SSSI_23	63241	16269	19.6	10%	38.8	19%	0.1	0%	9.7	32%	0.0
8	7	0	6							0%	22.8%
SSSI_23	63243	16269	19.6	10%	38.8	19%	0.0	0%	9.6	32%	0.0
9	7	0	6							0%	22.8%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_24_0	63245_7	16269_0	19.7	10%	38.9	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_24_1	63247_7	16269_0	19.8	10%	39.0	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_24_2	63249_7	16269_0	19.8	10%	39.0	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_24_3	63251_7	16269_0	19.4	10%	38.6	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_24_4	63253_7	16269_0	19.6	10%	38.8	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_24_5	63255_7	16269_0	19.4	10%	38.6	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_24_6	63257_7	16269_0	19.1	10%	38.3	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_24_7	63259_7	16269_0	19.4	10%	38.6	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_24_8	63261_7	16269_0	20.6	10%	39.8	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_24_9	63263_7	16269_0	20.3	10%	39.5	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)				Annual Mean NOx ($\mu\text{g}/\text{m}^3$)				Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL		
SSSI_25_0	63265_7	16269_0	19.9	10%	39.1	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_25_1	63267_7	16269_0	19.9	10%	39.1	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_25_2	63269_7	16269_0	19.4	10%	38.6	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_25_3	63219_7	16271_0	18.5	9%	37.7	19%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_25_4	63221_7	16271_0	19.3	10%	38.5	19%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_25_5	63223_7	16271_0	19.0	10%	38.2	19%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_25_6	63225_7	16271_0	19.1	10%	38.3	19%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_25_7	63227_7	16271_0	18.9	9%	38.1	19%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_25_8	63229_7	16271_0	19.8	10%	39.0	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_25_9	63231_7	16271_0	20.1	10%	39.3	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_260	632337	162710	20.2	10%	39.4	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_261	632357	162710	20.1	10%	39.3	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_262	632377	162710	20.3	10%	39.5	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_263	632397	162710	19.9	10%	39.1	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_264	632417	162710	20.2	10%	39.4	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_265	632437	162710	20.3	10%	39.5	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_266	632457	162710	20.3	10%	39.5	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_267	632477	162710	20.5	10%	39.7	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_268	632497	162710	20.0	10%	39.2	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_269	632517	162710	20.0	10%	39.2	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_27 0	63253 7	16271 0	20.1	10%	39.3	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_27 1	63255 7	16271 0	20.1	10%	39.3	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_27 2	63257 7	16271 0	20.8	10%	40.0	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_27 3	63259 7	16271 0	21.5	11%	40.7	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_27 4	63261 7	16271 0	21.2	11%	40.4	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_27 5	63263 7	16271 0	20.9	10%	40.1	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_27 6	63265 7	16271 0	20.7	10%	39.9	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_27 7	63267 7	16271 0	20.2	10%	39.4	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_27 8	63217 7	16273 0	19.4	10%	38.6	19%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_27 9	63219 7	16273 0	19.5	10%	38.7	19%	0.1	0%	9.7	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_28 0	63221 7	16273 0	20.0	10%	39.2	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_28 1	63223 7	16273 0	20.0	10%	39.2	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_28 2	63225 7	16273 0	20.0	10%	39.2	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_28 3	63227 7	16273 0	19.8	10%	39.0	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_28 4	63229 7	16273 0	20.7	10%	39.9	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_28 5	63231 7	16273 0	20.9	10%	40.1	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_28 6	63233 7	16273 0	21.0	11%	40.2	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_28 7	63235 7	16273 0	20.9	10%	40.1	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_28 8	63237 7	16273 0	21.1	11%	40.3	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_28 9	63239 7	16273 0	20.9	10%	40.1	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)			
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_29 0	63241 7	16273 0	20.8	10%	40.0	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_29 1	63243 7	16273 0	20.9	10%	40.1	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_29 2	63245 7	16273 0	21.0	11%	40.2	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_29 3	63247 7	16273 0	20.9	10%	40.1	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_29 4	63249 7	16273 0	20.3	10%	39.5	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_29 5	63251 7	16273 0	20.5	10%	39.7	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_29 6	63253 7	16273 0	21.4	11%	40.6	20%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_29 7	63255 7	16273 0	22.7	11%	41.9	21%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_29 8	63257 7	16273 0	22.6	11%	41.8	21%	0.0	0%	9.6	32%	0.0	0%	22.8	228%
SSSI_29 9	63259 7	16273 0	22.2	11%	41.4	21%	0.0	0%	9.6	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL		
SSSI_30	63261	16273	21.0	11%	41.1		21%	0.0	0%		9.6	32%	0.0	0%	22.8	228%
	07	0	9													
SSSI_30	63263	16273	21.1	11%	40.6		20%	0.0	0%		9.6	32%	0.0	0%	22.8	228%
	7	0	4													
SSSI_30	63265	16273	21.2	11%	40.2		20%	0.0	0%		9.6	32%	0.0	0%	22.8	228%
	7	0	0													
SSSI_30	63217	16275	20.3	10%	39.7		20%	0.1	0%		9.7	32%	0.0	0%	22.8	228%
	7	0	5													
SSSI_30	63219	16275	20.4	10%	40.0		20%	0.1	0%		9.7	32%	0.0	0%	22.8	228%
	7	0	8													
SSSI_30	63221	16275	21.5	11%	40.3		20%	0.1	0%		9.7	32%	0.0	0%	22.8	228%
	7	0	1													
SSSI_30	63223	16275	21.6	11%	40.3		20%	0.1	0%		9.7	32%	0.0	0%	22.8	228%
	7	0	1													
SSSI_30	63225	16275	21.7	11%	40.3		20%	0.1	0%		9.7	32%	0.0	0%	22.8	228%
	7	0	1													
SSSI_30	63227	16275	21.8	11%	40.4		20%	0.1	0%		9.7	32%	0.0	0%	22.8	228%
	7	0	2													
SSSI_30	63229	16275	21.9	11%	40.8		20%	0.1	0%		9.7	32%	0.0	0%	22.8	228%
	7	0	6													

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_31	63231	16275	22.0	11%	41.3	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	1											
SSSI_31	63233	16275	21.1	11%	41.1	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	9											
SSSI_31	63235	16275	22.2	11%	41.3	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	1											
SSSI_31	63237	16275	21.3	11%	41.0	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	8											
SSSI_31	63239	16275	21.4	11%	41.1	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	9											
SSSI_31	63241	16275	21.5	11%	40.9	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	7											
SSSI_31	63243	16275	21.6	11%	40.9	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	7											
SSSI_31	63245	16275	21.7	11%	41.0	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	8											
SSSI_31	63247	16275	21.8	11%	40.6	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	4											
SSSI_31	63249	16275	20.9	10%	40.1	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	9											

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL		
SSSI_320	632517	162750	23.4	12%	42.6	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_321	632537	162750	24.3	12%	43.5	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_322	632557	162750	24.0	12%	43.2	22%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_323	632577	162750	23.6	12%	42.8	21%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_324	632597	162750	23.0	12%	42.2	21%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_325	632617	162750	22.4	11%	41.6	21%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_326	632637	162750	21.9	11%	41.1	21%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_327	632161	162770	21.6	11%	40.8	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_328	632177	162770	22.0	11%	41.2	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_329	632197	162770	22.3	11%	41.5	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)			
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_33	63221	16277	22.0	11%	41.8	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	07	0	6											
SSSI_33	63223	16277	22.1	11%	41.7	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	5											
SSSI_33	63225	16277	22.2	11%	41.7	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	5											
SSSI_33	63227	16277	22.3	11%	41.8	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	6											
SSSI_33	63229	16277	22.4	11%	42.1	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	9											
SSSI_33	63231	16277	23.5	12%	42.4	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	2											
SSSI_33	63233	16277	23.6	12%	42.3	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	1											
SSSI_33	63235	16277	23.7	12%	42.3	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	1											
SSSI_33	63237	16277	23.8	12%	42.3	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	1											
SSSI_33	63239	16277	22.9	11%	42.1	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	9											

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL		
SSSI_34_0	63241_7	16277_0	22.6	11%	41.8	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_34_1	63243_7	16277_0	22.7	11%	41.9	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_34_2	63245_7	16277_0	22.5	11%	41.7	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_34_3	63247_7	16277_0	23.5	12%	42.7	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_34_4	63249_7	16277_0	25.4	13%	44.6	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_34_5	63251_7	16277_0	25.9	13%	45.1	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_34_6	63253_7	16277_0	25.5	13%	44.7	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_34_7	63255_7	16277_0	25.2	13%	44.4	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_34_8	63257_7	16277_0	24.6	12%	43.8	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_34_9	63259_7	16277_0	23.5	12%	42.7	21%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL		
SSSI_35_0	63261_7	16277_0	23.0	12%	42.2	21%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_35_1	63214_7	16279_0	22.6	11%	41.8	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_35_2	63215_7	16279_0	22.9	11%	42.1	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_35_3	63217_7	16279_0	23.5	12%	42.7	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_35_4	63219_7	16279_0	24.1	12%	43.3	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_35_5	63221_7	16279_0	24.2	12%	43.4	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_35_6	63223_7	16279_0	24.2	12%	43.4	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_35_7	63225_7	16279_0	24.1	12%	43.3	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_35_8	63227_7	16279_0	24.2	12%	43.4	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_35_9	63229_7	16279_0	24.4	12%	43.6	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)			
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_360	632317	162790	24.7	12%	43.9	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_361	632337	162790	24.7	12%	43.9	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_362	632357	162790	24.3	12%	43.5	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_363	632377	162790	24.3	12%	43.5	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_364	632397	162790	24.1	12%	43.3	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_365	632417	162790	23.9	12%	43.1	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_366	632437	162790	23.7	12%	42.9	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_367	632457	162790	27.2	14%	46.4	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_368	632477	162790	27.2	14%	46.4	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_369	632497	162790	27.6	14%	46.8	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)			
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	
SSSI_37 0	63251 7	16279 0	27.4	14%	46.6	23%	0.1	0%	9.7	32%	0.0 0%	22.8 %
SSSI_37 1	63253 7	16279 0	26.8	13%	46.0	23%	0.1	0%	9.7	32%	0.0 0%	22.8 %
SSSI_37 2	63255 7	16279 0	26.3	13%	45.5	23%	0.1	0%	9.7	32%	0.0 0%	22.8 %
SSSI_37 3	63257 7	16279 0	25.3	13%	44.5	22%	0.1	0%	9.7	32%	0.0 0%	22.8 %
SSSI_37 4	63259 7	16279 0	24.2	12%	43.4	22%	0.1	0%	9.7	32%	0.0 0%	22.8 %
SSSI_37 5	63213 7	16281 0	23.9	12%	43.1	22%	0.1	0%	9.7	32%	0.0 0%	22.8 %
SSSI_37 6	63215 7	16281 0	24.5	12%	43.7	22%	0.1	0%	9.7	32%	0.0 0%	22.8 %
SSSI_37 7	63217 7	16281 0	25.0	13%	44.2	22%	0.1	0%	9.7	32%	0.0 0%	22.8 %
SSSI_37 8	63219 7	16281 0	25.8	13%	45.0	23%	0.1	0%	9.7	32%	0.0 0%	22.8 %
SSSI_37 9	63221 7	16280 4	25.4	13%	44.6	22%	0.1	0%	9.7	32%	0.0 0%	22.8 %

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL		
SSSI_38	63225	16281	26.0	13%	45.3	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	1													
SSSI_38	63227	16281	26.1	13%	45.4	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	2													
SSSI_38	63229	16281	26.2	13%	45.3	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	1													
SSSI_38	63231	16281	26.3	13%	45.8	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	6													
SSSI_38	63233	16281	26.4	13%	45.2	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	0													
SSSI_38	63235	16281	25.5	13%	45.0	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	8													
SSSI_38	63237	16281	25.6	13%	44.9	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	7													
SSSI_38	63239	16281	25.7	13%	44.6	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	4													
SSSI_38	63241	16281	26.8	13%	46.1	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	9													
SSSI_38	63243	16281	29.9	15%	49.1	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	9													

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL		
SSSI_39	63245	16281	29.0	15%	48.9	24%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	7													
SSSI_39	63247	16281	29.1	15%	48.6	24%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	4													
SSSI_39	63249	16281	29.2	15%	48.6	24%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	4													
SSSI_39	63251	16281	28.3	14%	47.7	24%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	5													
SSSI_39	63253	16281	28.4	14%	47.2	24%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	0													
SSSI_39	63255	16281	27.5	14%	46.3	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	1													
SSSI_39	63257	16281	25.6	13%	44.4	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	2													
SSSI_39	63212	16283	25.7	13%	45.0	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	2	0	8													
SSSI_39	63213	16283	25.8	13%	44.7	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	5													
SSSI_39	63215	16283	26.9	13%	45.7	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	5													

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)			
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_400	632175	162830	27.1	14%	46.3	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_401	632258	162829	28.4	14%	47.6	24%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_402	632277	162830	28.6	14%	47.8	24%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_403	632297	162830	28.0	14%	47.2	24%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_404	632317	162830	28.7	14%	47.9	24%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_405	632337	162830	28.1	14%	47.3	24%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_406	632357	162830	27.7	14%	46.9	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_407	632377	162830	27.3	14%	46.5	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_408	632397	162830	31.5	16%	50.7	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_409	632417	162830	32.1	16%	51.3	26%	0.1	0%	9.7	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)			
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_41	63243	16283	32.0	16%	51.7	26%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	5											
SSSI_41	63245	16283	31.1	16%	51.0	26%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	8											
SSSI_41	63247	16283	31.2	16%	50.7	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	5											
SSSI_41	63249	16283	31.3	16%	50.2	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	0											
SSSI_41	63251	16283	30.4	15%	49.2	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	0											
SSSI_41	63253	16283	29.5	15%	48.2	24%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	0											
SSSI_41	63255	16283	27.6	14%	46.2	23%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	0											
SSSI_41	63211	16285	29.7	15%	48.2	24%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
	7	0	0											
SSSI_41	63213	16285	28.8	14%	47.4	24%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
	7	0	2											
SSSI_41	63215	16285	28.9	14%	48.1	24%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
	7	0	9											

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)			
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_420	632277	162850	31.6	16%	50.8	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_421	632297	162850	30.9	15%	50.1	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_422	632317	162850	30.7	15%	49.9	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_423	632337	162850	30.2	15%	49.4	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_424	632357	162850	29.9	15%	49.1	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_425	632377	162850	34.2	17%	53.4	27%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_426	632397	162850	34.7	17%	53.9	27%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_427	632417	162850	35.3	18%	54.5	27%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_428	632437	162850	35.0	18%	54.2	27%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_429	632457	162850	34.2	17%	53.4	27%	0.1	0%	9.7	32%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)			
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_43	63247	16285	33.0	17%	52.7	26%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	5											
SSSI_43	63249	16285	31.1	16%	51.1	26%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	9											
SSSI_43	63251	16285	30.2	15%	50.0	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	8											
SSSI_43	63253	16285	29.3	15%	48.6	24%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	4											
SSSI_43	63254	16287	30.4	15%	49.2	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	6	0	0											
SSSI_43	63209	16287	28.5	14%	47.5	24%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
	7	0	3											
SSSI_43	63211	16287	31.6	16%	50.6	25%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
	7	0	4											
SSSI_43	63213	16287	32.7	16%	51.3	26%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
	7	0	1											
SSSI_43	63214	16287	31.8	16%	50.5	25%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
	9	0	3											
SSSI_43	63227	16287	35.9	18%	54.7	27%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
	7	0	5											

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_44	63229	16287	34.0	17%	53.6	27%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
	7	0	4											
SSSI_44	63231	16287	34.1	17%	53.3	27%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	1											
SSSI_44	63233	16287	36.2	18%	55.8	28%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	6											
SSSI_44	63235	16287	37.3	19%	56.6	28%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	4											
SSSI_44	63237	16287	38.4	19%	57.4	29%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	2											
SSSI_44	63239	16287	38.5	19%	57.6	29%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	4											
SSSI_44	63241	16287	38.6	19%	57.5	29%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	3											
SSSI_44	63243	16287	37.7	19%	56.5	28%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	3											
SSSI_44	63245	16287	36.8	18%	55.4	28%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	2											
SSSI_44	63247	16287	34.9	17%	53.4	27%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	2											

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)			
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_45_0	63249_7	16287_0	33.2	17%	52.4	26%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_45_1	63251_7	16287_0	32.1	16%	51.3	26%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_45_2	63253_7	16287_0	30.3	15%	49.5	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
SSSI_45_3	63208_2	16289_0	28.5	14%	47.7	24%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
SSSI_45_4	63209_7	16289_0	29.8	15%	49.0	25%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
SSSI_45_5	63211_7	16289_0	32.3	16%	51.5	26%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
SSSI_45_6	63213_5	16289_0	36.6	18%	55.8	28%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
SSSI_45_7	63228_9	16289_0	39.5	20%	58.7	29%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
SSSI_45_8	63229_7	16289_0	38.1	19%	57.3	29%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
SSSI_45_9	63231_7	16289_0	40.4	20%	59.6	30%	0.2	1%	9.8	33%	0.0	0%	22.8	228%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC as % CL	PEC	PC as % CL
SSSI_46	63233	16289	42.0	21%	61.4	31%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
	7	0	2											
SSSI_46	63235	16289	42.1	21%	61.4	31%	0.2	1%	9.8	33%	0.0	0%	22.8	228%
	7	0	2											
SSSI_46	63237	16289	42.2	21%	61.6	31%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	4											
SSSI_46	63239	16289	42.3	21%	61.2	31%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	0											
SSSI_46	63241	16289	41.4	21%	60.3	30%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	1											
SSSI_46	63243	16289	39.5	20%	58.3	29%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	1											
SSSI_46	63245	16289	38.6	19%	57.2	29%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	0											
SSSI_46	63247	16289	35.7	18%	55.1	28%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	9											
SSSI_46	63249	16289	35.8	18%	54.3	27%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	1											
SSSI_46	63251	16289	32.9	16%	52.0	26%	0.1	0%	9.7	32%	0.0	0%	22.8	228%
	7	0	8											

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_470	632537	162890	31.9	16%	51.1	26%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_471	632549	162890	30.8	15%	50.0	25%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_472	632077	162910	29.3	15%	48.5	24%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_473	632097	162910	32.0	16%	51.2	26%	0.2	1%	9.8	33%	0.0
										0%	22.8%
SSSI_474	632117	162910	34.7	17%	53.9	27%	0.2	1%	9.8	33%	0.0
										0%	22.8%
SSSI_475	632297	162910	44.7	22%	63.9	32%	0.2	1%	9.8	33%	0.0
										0%	22.8%
SSSI_476	632317	162910	47.2	24%	66.4	33%	0.2	1%	9.8	33%	0.0
										0%	22.8%
SSSI_477	632337	162910	48.5	24%	67.7	34%	0.2	1%	9.8	33%	0.0
										0%	22.8%
SSSI_478	632357	162910	47.2	24%	66.4	33%	0.2	1%	9.8	33%	0.0
										0%	22.8%
SSSI_479	632377	162910	46.2	23%	65.4	33%	0.2	1%	9.8	33%	0.0
										0%	22.8%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL		
SSSI_48	63239	16291	44.0	22%	64.0	32%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	8													
SSSI_48	63241	16291	43.1	22%	62.7	31%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	5													
SSSI_48	63243	16291	41.2	21%	61.1	31%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	9													
SSSI_48	63245	16291	39.3	20%	59.1	30%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	9													
SSSI_48	63247	16291	38.4	19%	57.5	29%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	3													
SSSI_48	63249	16291	36.5	18%	55.3	28%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	1													
SSSI_48	63251	16291	34.6	17%	53.9	27%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	7													
SSSI_48	63253	16291	32.7	16%	51.9	26%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	7													
SSSI_48	63255	16291	31.8	16%	50.3	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	2	0	1													
SSSI_48	63205	16293	31.9	16%	50.3	25%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
	7	0	1													

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_49	63207	16293	32.0	16%	51.8	26%	0.1	0%	9.7	32%	0.0
	7	0	6							0%	22.8%
SSSI_49	63209	16293	33.1	17%	52.9	26%	0.2	1%	9.8	33%	0.0
	7	0	7							0%	22.8%
SSSI_49	63211	16293	37.2	19%	56.2	28%	0.2	1%	9.8	33%	0.0
	0	1	0							0%	22.8%
SSSI_49	63233	16291	49.3	25%	68.9	34%	0.2	1%	9.8	33%	0.0
	7	4	7							0%	22.8%
SSSI_49	63235	16291	48.4	24%	67.6	34%	0.2	1%	9.8	33%	0.0
	8	5	4							0%	22.8%
SSSI_49	63237	16291	47.5	24%	66.6	33%	0.2	1%	9.8	33%	0.0
	8	8	4							0%	22.8%
SSSI_49	63239	16292	46.6	23%	65.9	33%	0.2	1%	9.8	33%	0.0
	8	0	7							0%	22.8%
SSSI_49	63241	16292	45.7	23%	65.0	33%	0.1	0%	9.7	32%	0.0
	7	3	8							0%	22.8%
SSSI_49	63243	16292	44.8	22%	64.0	32%	0.1	0%	9.7	32%	0.0
	7	8	8							0%	22.8%
SSSI_49	63245	16293	42.9	21%	61.9	31%	0.1	0%	9.7	32%	0.0
	7	0	7							0%	22.8%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_500	632477	162930	40.2	20%	59.4	30%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_501	632497	162930	38.1	19%	57.3	29%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_502	632517	162930	36.0	18%	55.2	28%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_503	632537	162930	33.4	17%	52.6	26%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_504	632555	162930	31.8	16%	51.0	26%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_505	632057	162950	33.8	17%	53.0	27%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_506	632077	162950	35.4	18%	54.6	27%	0.2	1%	9.8	33%	0.0
										0%	22.8%
SSSI_507	632097	162950	39.8	20%	59.0	30%	0.2	1%	9.8	33%	0.0
										0%	22.8%
SSSI_508	632084	162970	41.5	21%	60.7	30%	0.2	1%	9.8	33%	0.0
										0%	22.8%
SSSI_509	632037	162970	38.9	19%	58.1	29%	0.1	0%	9.7	32%	0.0
										0%	22.8%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_51	63205	16297	37.0	19%	56.9	28%	0.1	0%	9.7	32%	0.0
	7	0	7							0%	22.8%
SSSI_51	63207	16297	39.1	20%	58.8	29%	0.2	1%	9.8	33%	0.0
	7	0	6							0%	22.8%
SSSI_51	63201	16299	42.2	21%	62.0	31%	0.1	0%	9.7	32%	0.0
	7	0	8							0%	22.8%
SSSI_51	63203	16299	42.3	21%	61.3	31%	0.1	0%	9.7	32%	0.0
	7	0	1							0%	22.8%
SSSI_51	63205	16299	40.4	20%	60.1	30%	0.1	0%	9.7	32%	0.0
	7	0	9							0%	22.8%
SSSI_51	63207	16299	41.5	21%	60.8	30%	0.1	0%	9.7	32%	0.0
	2	0	6							0%	22.8%
SSSI_51	63199	16301	43.6	22%	62.8	31%	0.1	0%	9.6	32%	0.0
	8	6	8							0%	22.7%
SSSI_51	63201	16301	43.7	22%	63.2	32%	0.1	0%	9.8	33%	0.0
	7	0	9							0%	22.7%
SSSI_51	63203	16301	43.8	22%	62.8	31%	0.1	0%	9.8	33%	0.0
	7	0	5							0%	22.7%
SSSI_51	63205	16301	42.9	21%	61.7	31%	0.1	0%	9.8	33%	0.0
	8	0	4							0%	22.7%

Receptor	Easting	Northing	Daily Mean NOx (µg/m³)			Annual Mean NOx (µg/m³)			Annual Mean N Deposition (kg N/ha/yr)		
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC
SSSI_520	632017	163030	43.6	22%	62.9	31%	0.1	0%	9.8	33%	0.0
										0%	22.7%
SSSI_521	632037	163030	43.7	22%	63.0	32%	0.1	0%	9.8	33%	0.0
										0%	22.7%
SSSI_522	632044	163030	43.7	22%	63.0	32%	0.1	0%	9.8	33%	0.0
										0%	22.7%
SSSI_523	632035	163045	44.0	22%	63.3	32%	0.1	0%	9.8	33%	0.0
										0%	22.7%
SSSI_524	632517	162935	36.3	18%	55.5	28%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_525	632457	162934	43.3	22%	62.5	31%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_526	632537	162934	33.3	17%	52.5	26%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_527	632497	162936	38.7	19%	57.9	29%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_528	632476	162935	40.7	20%	59.9	30%	0.1	0%	9.7	32%	0.0
										0%	22.8%
SSSI_529	632552	162934	32.2	16%	51.4	26%	0.1	0%	9.7	32%	0.0
										0%	22.8%

Receptor	Easting	Northing	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)			Annual Mean NOx ($\mu\text{g}/\text{m}^3$)			Annual Mean N Deposition (kg N/ha/yr)			
			PC	PC as % CL	PEC	PC	PC as % CL	PEC	PC	PC as % CL	PEC	PEC as % CL
SSSI_53	63204	16295	35.	18%	54.4	27%	0.1	0%	9.7	32%	0.0	0 %
	0	3	0	2							22.8	228 %

Results represent maximum impact at each receptor point based on five years of meteorological data

PC = Process Contribution (i.e. Impact from Generator Emissions)

PEC = Predicted Environmental Concentration (PC + Background)

CL = Critical Level or Critical Load

Daily Mean NOx CL = 200 $\mu\text{g}/\text{m}^3$

Annual Mean NOx CL = 30 $\mu\text{g}/\text{m}^3$

Annual Mean N Deposition CL = 10 kg N/ha/yr

Appendix Table A.9 Scenario 2 Worst-Case Design - Full Receptor Grid Results

Receptor	Easting	Northing	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)			Annual Mean NOx ($\mu\text{g}/\text{m}^3$)			Annual Mean N Deposition (kg N/ha/yr)					
			PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_1	6323 77	1624 30	32.7	16%		51.9	26%	0.0	0%		9.6	32%	0.0	0% 22.8 %
SSSI_2	6323 57	1624 50	34.8	17%		54.0	27%	0.0	0%		9.6	32%	0.0	0% 22.8 %
SSSI_3	6323 77	1624 50	34.0	17%		53.2	27%	0.0	0%		9.6	32%	0.0	0% 22.8 %
SSSI_4	6323 97	1624 50	34.5	17%		53.7	27%	0.0	0%		9.6	32%	0.0	0% 22.8 %
SSSI_5	6324 17	1624 50	34.3	17%		53.5	27%	0.0	0%		9.6	32%	0.0	0% 22.8 %
SSSI_6	6323 37	1624 70	36.6	18%		55.8	28%	0.0	0%		9.6	32%	0.0	0% 22.8 %
SSSI_7	6323 57	1624 70	36.2	18%		55.4	28%	0.0	0%		9.6	32%	0.0	0% 22.8 %
SSSI_8	6323 77	1624 70	35.4	18%		54.6	27%	0.0	0%		9.6	32%	0.0	0% 22.8 %
SSSI_9	6323 97	1624 70	35.7	18%		54.9	27%	0.0	0%		9.6	32%	0.0	0% 22.8 %

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)				
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	
SSSI_10	6324 17	1624 70	35.4		18%		54.6	27%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_11	6324 37	1624 70	34.7		17%		53.9	27%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_12	6324 55	1624 62	32.6		16%		51.8	26%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_13	6324 77	1624 70	27.7		14%		46.9	23%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_14	6324 98	1624 75	27.9		14%		47.1	24%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_15	6325 20	1624 79	27.4		14%		46.6	23%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_16	6323 37	1624 90	38.1		19%		57.3	29%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_17	6323 57	1624 90	37.7		19%		56.9	28%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_18	6323 77	1624 90	36.9		18%		56.1	28%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_19	6323 97	1624 90	36.8		18%		56.0	28%	0.0	0%	9.6	32%	0.0	0%	22.8 %

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)				
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	
SSSI_20	6324 17	1624 90	36.5		18%		55.7	28%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_21	6323 17	1625 10	39.5		20%		58.7	29%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_22	6323 37	1625 10	39.6		20%		58.8	29%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_23	6323 57	1625 10	39.3		20%		58.5	29%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_24	6323 77	1625 10	38.5		19%		57.7	29%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_25	6323 97	1625 10	38.0		19%		57.2	29%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_26	6324 17	1625 10	37.6		19%		56.8	28%	0.1	0%	9.7	32%	0.0	0%	22.8 %
SSSI_27	6327 17	1625 10	15.6		8%		34.8	17%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_28	6327 37	1625 10	15.5		8%		34.7	17%	0.0	0%	9.6	32%	0.0	0%	22.8 %
SSSI_29	6327 57	1625 10	15.4		8%		34.6	17%	0.0	0%	9.6	32%	0.0	0%	22.8 %

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_30	6327 77	1625 10	15.2		8%		34.4	17%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_31	6322 97	1625 30	40.5		20%		59.7	30%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_32	6323 17	1625 30	41.1		21%		60.3	30%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_33	6323 37	1625 30	41.4		21%		60.6	30%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_34	6323 57	1625 30	41.1		21%		60.3	30%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_35	6323 77	1625 30	40.2		20%		59.4	30%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_36	6323 97	1625 30	39.6		20%		58.8	29%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_37	6324 17	1625 30	38.9		19%		58.1	29%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_38	6324 37	1625 30	38.1		19%		57.3	29%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_39	6326 77	1625 30	17.8		9%		37.0	19%	0.0		0%		9.6	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)							
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_40	6326 97	1625 30	16.4		8%		35.6	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_41	6327 17	1625 30	16.0		8%		35.2	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_42	6327 37	1625 30	16.0		8%		35.2	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_43	6327 57	1625 30	15.7		8%		34.9	17%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_44	6327 77	1625 30	15.6		8%		34.8	17%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_45	6327 97	1625 30	15.3		8%		34.5	17%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_46	6322 97	1625 50	42.3		21%		61.5	31%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_47	6323 17	1625 50	42.9		21%		62.1	31%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_48	6323 37	1625 50	43.2		22%		62.4	31%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_49	6323 57	1625 50	43.0		22%		62.2	31%	0.1		0%		9.7	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)							
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_50	6323 77	1625 50	42.1		21%		61.3	31%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_51	6323 97	1625 50	41.4		21%		60.6	30%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_52	6324 17	1625 50	40.4		20%		59.6	30%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_53	6324 37	1625 50	39.5		20%		58.7	29%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_54	6326 37	1625 50	28.0		14%		47.2	24%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_55	6326 57	1625 50	21.4		11%		40.6	20%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_56	6326 77	1625 50	17.2		9%		36.4	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_57	6326 97	1625 50	16.5		8%		35.7	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_58	6327 17	1625 50	16.6		8%		35.8	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_59	6327 37	1625 50	16.4		8%		35.6	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_60	632757	162550	16.1	8%			35.3	18%	0.0	0%		9.6	32%	0.0	0%	22.8	228%	
SSSI_61	632777	162550	15.6	8%			34.8	17%	0.0	0%		9.6	32%	0.0	0%	22.8	228%	
SSSI_62	632797	162550	15.6	8%			34.8	17%	0.0	0%		9.6	32%	0.0	0%	22.8	228%	
SSSI_63	632817	162550	15.4	8%			34.6	17%	0.0	0%		9.6	32%	0.0	0%	22.8	228%	
SSSI_64	632837	162550	15.1	8%			34.3	17%	0.0	0%		9.6	32%	0.0	0%	22.8	228%	
SSSI_65	632277	162570	43.4	22%			62.6	31%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_66	632297	162570	44.4	22%			63.6	32%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_67	632317	162570	44.7	22%			63.9	32%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_68	632337	162570	45.3	23%			64.5	32%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_69	632357	162570	45.1	23%			64.3	32%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)							
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_70	6323 77	1625 70	44.3		22%		63.5	32%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_71	6323 97	1625 70	43.5		22%		62.7	31%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_72	6324 17	1625 70	42.3		21%		61.5	31%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_73	6325 97	1625 70	31.7		16%		50.9	25%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_74	6326 17	1625 70	30.4		15%		49.6	25%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_75	6326 37	1625 70	27.0		14%		46.2	23%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_76	6326 57	1625 70	20.0		10%		39.2	20%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_77	6326 77	1625 70	17.0		9%		36.2	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_78	6326 97	1625 70	17.2		9%		36.4	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_79	6327 17	1625 70	17.1		9%		36.3	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)				
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	
SSSI_80	6327 37	1625 70	16.8	8%		36.0	18%	0.0	0%		9.6	32%	0.0	0%	22.8 %
SSSI_81	6327 57	1625 70	16.1	8%		35.3	18%	0.0	0%		9.6	32%	0.0	0%	22.8 %
SSSI_82	6327 77	1625 70	16.1	8%		35.3	18%	0.0	0%		9.6	32%	0.0	0%	22.8 %
SSSI_83	6327 97	1625 70	15.9	8%		35.1	18%	0.0	0%		9.6	32%	0.0	0%	22.8 %
SSSI_84	6328 17	1625 70	15.6	8%		34.8	17%	0.0	0%		9.6	32%	0.0	0%	22.8 %
SSSI_85	6328 37	1625 70	15.4	8%		34.6	17%	0.0	0%		9.6	32%	0.0	0%	22.8 %
SSSI_86	6328 57	1625 70	15.2	8%		34.4	17%	0.0	0%		9.6	32%	0.0	0%	22.8 %
SSSI_87	6322 57	1625 90	44.1	22%		63.3	32%	0.1	0%		9.7	32%	0.0	0%	22.8 %
SSSI_88	6322 77	1625 90	45.3	23%		64.5	32%	0.1	0%		9.7	32%	0.0	0%	22.8 %
SSSI_89	6322 97	1625 90	46.5	23%		65.7	33%	0.1	0%		9.7	32%	0.0	0%	22.8 %

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_90	6323 17	1625 90	47.0		24%		66.2	33%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_91	6323 37	1625 90	47.6		24%		66.8	33%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_92	6323 57	1625 90	47.6		24%		66.8	33%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_93	6323 77	1625 90	46.8		23%		66.0	33%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_94	6323 97	1625 90	45.8		23%		65.0	33%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_95	6324 17	1625 90	44.4		22%		63.6	32%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_96	6325 37	1625 90	35.8		18%		55.0	28%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_97	6325 57	1625 90	35.3		18%		54.5	27%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_98	6325 77	1625 90	34.2		17%		53.4	27%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_99	6325 97	1625 90	33.0		17%		52.2	26%	0.1		0%		9.7	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_1 00	6326 17	1625 90	31.8	16%			51.0	26%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_1 01	6326 37	1625 90	25.6	13%			44.8	22%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_1 02	6326 57	1625 90	18.5	9%			37.7	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_1 03	6326 77	1625 90	17.8	9%			37.0	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_1 04	6326 97	1625 90	17.8	9%			37.0	19%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_1 05	6327 17	1625 90	17.6	9%			36.8	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_1 06	6327 37	1625 90	16.9	8%			36.1	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_1 07	6327 57	1625 90	16.7	8%			35.9	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_1 08	6327 77	1625 90	16.6	8%			35.8	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		
SSSI_1 09	6327 97	1625 90	16.2	8%			35.4	18%	0.0	0%	9.6	32%	0.0	0%	22.8	228%		

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_10	6328 17	1625 90	16.0		8%		35.2	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_11	6328 37	1625 90	15.7		8%		34.9	17%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_12	6328 57	1625 90	15.4		8%		34.6	17%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_13	6328 77	1625 90	14.9		7%		34.1	17%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_14	6322 57	1626 10	45.9		23%		65.1	33%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_15	6322 77	1626 10	47.1		24%		66.3	33%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_16	6322 97	1626 10	48.7		24%		67.9	34%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_17	6323 17	1626 10	49.5		25%		68.7	34%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_18	6323 37	1626 10	50.3		25%		69.5	35%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_19	6323 57	1626 10	50.1		25%		69.3	35%	0.1		0%		9.7	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)				
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	
SSSI_1 20	6323 77	1626 10	49.4	25%		68.6	34%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_1 21	6323 97	1626 10	48.3	24%		67.5	34%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_1 22	6324 17	1626 10	46.9	23%		66.1	33%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_1 23	6324 97	1626 10	38.2	19%		57.4	29%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_1 24	6325 17	1626 10	38.5	19%		57.7	29%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_1 25	6325 37	1626 10	37.9	19%		57.1	29%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_1 26	6325 57	1626 10	37.1	19%		56.3	28%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_1 27	6325 77	1626 10	35.9	18%		55.1	28%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_1 28	6325 97	1626 10	34.5	17%		53.7	27%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_1 29	6326 17	1626 10	33.2	17%		52.4	26%	0.1	0%		9.7	32%	0.0	0% 22.8 %	

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)							
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_1 30	6326 37	1626 10	23.9		12%		43.1	22%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 31	6326 57	1626 10	18.8		9%		38.0	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 32	6326 77	1626 10	18.5		9%		37.7	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 33	6326 97	1626 10	18.3		9%		37.5	19%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_1 34	6327 17	1626 10	17.7		9%		36.9	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_1 35	6327 37	1626 10	17.5		9%		36.7	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_1 36	6327 57	1626 10	17.4		9%		36.6	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_1 37	6327 77	1626 10	16.8		8%		36.0	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_1 38	6327 97	1626 10	16.6		8%		35.8	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_1 39	6328 17	1626 10	16.3		8%		35.5	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_1 40	6328 37	1626 10	15.9		8%		35.1	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_1 41	6328 57	1626 10	15.4		8%		34.6	17%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_1 42	6322 37	1626 30	45.9		23%		65.1	33%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 43	6322 57	1626 30	47.7		24%		66.9	33%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 44	6322 77	1626 30	49.2		25%		68.4	34%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 45	6322 97	1626 30	50.9		25%		70.1	35%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 46	6323 17	1626 30	52.1		26%		71.3	36%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 47	6323 37	1626 30	53.2		27%		72.4	36%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 48	6323 57	1626 30	52.9		26%		72.1	36%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 49	6323 77	1626 30	52.3		26%		71.5	36%	0.1		0%		9.7	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_1 50	6323 97	1626 30	50.9	25%			70.1	35%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_1 51	6324 17	1626 30	49.5	25%			68.7	34%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_1 52	6324 37	1626 30	47.9	24%			67.1	34%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_1 53	6324 57	1626 30	45.8	23%			65.0	33%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_1 54	6324 77	1626 30	41.6	21%			60.8	30%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_1 55	6324 97	1626 30	41.2	21%			60.4	30%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_1 56	6325 17	1626 30	41.1	21%			60.3	30%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_1 57	6325 37	1626 30	40.3	20%			59.5	30%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_1 58	6325 57	1626 30	39.2	20%			58.4	29%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_1 59	6325 77	1626 30	37.9	19%			57.1	29%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_1 60	6325 97	1626 30	36.3		18%		55.5	28%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 61	6326 17	1626 30	32.6		16%		51.8	26%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 62	6326 37	1626 30	22.1		11%		41.3	21%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 63	6326 57	1626 30	19.3		10%		38.5	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 64	6326 77	1626 30	18.9		9%		38.1	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 65	6326 97	1626 30	18.5		9%		37.7	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 66	6327 17	1626 30	18.2		9%		37.4	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 67	6327 37	1626 30	18.2		9%		37.4	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 68	6327 57	1626 30	17.5		9%		36.7	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%
SSSI_1 69	6327 77	1626 30	17.3		9%		36.5	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx (µg/m³)						Annual Mean NOx (µg/m³)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_1 70	6327 97	1626 30	16.8	8%			36.0	18%	0.0	0%		9.6	32%	0.0	0%	22.8	228%	
SSSI_1 71	6328 17	1626 30	16.4	8%			35.6	18%	0.0	0%		9.6	32%	0.0	0%	22.8	228%	
SSSI_1 72	6322 37	1626 50	47.5	24%			66.7	33%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_1 73	6322 57	1626 50	49.4	25%			68.6	34%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_1 74	6322 77	1626 50	51.4	26%			70.6	35%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_1 75	6322 97	1626 50	53.2	27%			72.4	36%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_1 76	6323 17	1626 50	54.9	27%			74.1	37%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_1 77	6323 37	1626 50	56.3	28%			75.5	38%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_1 78	6323 57	1626 50	56.2	28%			75.4	38%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_1 79	6323 77	1626 50	55.3	28%			74.5	37%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_1 80	6323 97	1626 50	53.6		27%		72.8	36%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 81	6324 17	1626 50	52.4		26%		71.6	36%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 82	6324 37	1626 50	50.7		25%		69.9	35%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 83	6324 57	1626 50	48.4		24%		67.6	34%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 84	6324 77	1626 50	44.9		22%		64.1	32%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 85	6324 97	1626 50	44.8		22%		64.0	32%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 86	6325 17	1626 50	44.1		22%		63.3	32%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 87	6325 37	1626 50	43.0		22%		62.2	31%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 88	6325 57	1626 50	41.8		21%		61.0	31%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 89	6325 77	1626 50	39.9		20%		59.1	30%	0.1		0%		9.7	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_1 90	6325 97	1626 50	38.2		19%		57.4	29%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 91	6326 17	1626 50	31.3		16%		50.5	25%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 92	6326 37	1626 50	20.5		10%		39.7	20%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 93	6326 57	1626 50	19.9		10%		39.1	20%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 94	6326 77	1626 50	19.6		10%		38.8	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 95	6326 97	1626 50	19.0		10%		38.2	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 96	6327 17	1626 50	19.0		10%		38.2	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 97	6327 37	1626 50	18.3		9%		37.5	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 98	6327 57	1626 50	18.0		9%		37.2	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_1 99	6327 77	1626 50	17.5		9%		36.7	18%	0.0		0%		9.6	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_200	632217	162670	47.1	24%		66.3	33%	0.1	0%		9.7	32%	0.0	0%22.8228%
SSSI_201	632237	162670	48.9	24%		68.1	34%	0.1	0%		9.7	32%	0.0	0%22.8228%
SSSI_202	632257	162670	51.3	26%		70.5	35%	0.1	0%		9.7	32%	0.0	0%22.8228%
SSSI_203	632277	162670	53.6	27%		72.8	36%	0.1	0%		9.7	32%	0.0	0%22.8228%
SSSI_204	632297	162670	55.5	28%		74.7	37%	0.1	0%		9.7	32%	0.0	0%22.8228%
SSSI_205	632317	162670	57.6	29%		76.8	38%	0.1	0%		9.7	32%	0.0	0%22.8228%
SSSI_206	632337	162670	59.5	30%		78.7	39%	0.1	0%		9.7	32%	0.0	0%22.8228%
SSSI_207	632357	162670	59.7	30%		78.9	39%	0.1	0%		9.7	32%	0.0	0%22.8228%
SSSI_208	632377	162670	58.7	29%		77.9	39%	0.1	0%		9.7	32%	0.0	0%22.8228%
SSSI_209	632397	162670	56.9	28%		76.1	38%	0.1	0%		9.7	32%	0.0	0%22.8228%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)				
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	
SSSI_2 10	6324 17	1626 70	55.7	28%		74.9	37%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 11	6324 37	1626 70	53.9	27%		73.1	37%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 12	6324 57	1626 70	51.5	26%		70.7	35%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 13	6324 77	1626 70	48.8	24%		68.0	34%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 14	6324 97	1626 70	48.8	24%		68.0	34%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 15	6325 17	1626 70	47.7	24%		66.9	33%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 16	6325 37	1626 70	46.5	23%		65.7	33%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 17	6325 57	1626 70	44.8	22%		64.0	32%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 18	6325 77	1626 70	42.6	21%		61.8	31%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 19	6325 97	1626 70	40.1	20%		59.3	30%	0.1	0%		9.7	32%	0.0	0% 22.8 %	

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)							
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_20	6326 17	1626 70	28.3		14%		47.5	24%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_21	6326 37	1626 70	21.1		11%		40.3	20%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_22	6326 57	1626 70	20.7		10%		39.9	20%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_23	6326 77	1626 70	19.9		10%		39.1	20%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_24	6326 97	1626 70	19.9		10%		39.1	20%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_25	6327 17	1626 70	19.3		10%		38.5	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_26	6327 37	1626 70	18.9		9%		38.1	19%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_27	6321 97	1626 90	50.5		25%		69.7	35%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_28	6322 17	1626 90	49.7		25%		68.9	34%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_29	6322 37	1626 90	50.7		25%		69.9	35%	0.1		0%		9.7	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_2 30	6322 57	1626 90	53.2		27%		72.4	36%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 31	6322 77	1626 90	55.7		28%		74.9	37%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 32	6322 97	1626 90	58.2		29%		77.4	39%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 33	6323 17	1626 90	60.6		30%		79.8	40%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 34	6323 37	1626 90	62.4		31%		81.6	41%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 35	6323 57	1626 90	63.4		32%		82.6	41%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 36	6323 77	1626 90	62.5		31%		81.7	41%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 37	6323 97	1626 90	60.8		30%		80.0	40%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 38	6324 17	1626 90	59.5		30%		78.7	39%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 39	6324 37	1626 90	57.5		29%		76.7	38%	0.1		0%		9.7	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx (µg/m³)					Annual Mean NOx (µg/m³)					Annual Mean N Deposition (kg N/ha/yr)							
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_2 40	6324 57	1626 90	54.8		27%		74.0	37%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 41	6324 77	1626 90	53.0		27%		72.2	36%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 42	6324 97	1626 90	53.0		27%		72.2	36%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 43	6325 17	1626 90	51.7		26%		70.9	35%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 44	6325 37	1626 90	50.2		25%		69.4	35%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 45	6325 57	1626 90	47.8		24%		67.0	34%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 46	6325 77	1626 90	45.2		23%		64.4	32%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 47	6325 97	1626 90	42.1		21%		61.3	31%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 48	6326 17	1626 90	25.4		13%		44.6	22%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_2 49	6326 37	1626 90	22.0		11%		41.2	21%	0.1		0%		9.7	32%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_2 50	6326 57	1626 90	20.9	10%			40.1	20%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_2 51	6326 77	1626 90	20.7	10%			39.9	20%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_2 52	6326 97	1626 90	20.4	10%			39.6	20%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_2 53	6321 97	1627 10	55.2	28%			74.4	37%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_2 54	6322 17	1627 10	54.5	27%			73.7	37%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_2 55	6322 37	1627 10	53.6	27%			72.8	36%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_2 56	6322 57	1627 10	54.9	27%			74.1	37%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_2 57	6322 77	1627 10	58.0	29%			77.2	39%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_2 58	6322 97	1627 10	60.8	30%			80.0	40%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_2 59	6323 17	1627 10	63.9	32%			83.1	42%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)				
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	
SSSI_2 60	6323 37	1627 10	65.9	33%		85.1	43%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 61	6323 57	1627 10	67.7	34%		86.9	43%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 62	6323 77	1627 10	67.1	34%		86.3	43%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 63	6323 97	1627 10	65.2	33%		84.4	42%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 64	6324 17	1627 10	63.7	32%		82.9	41%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 65	6324 37	1627 10	61.6	31%		80.8	40%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 66	6324 57	1627 10	58.6	29%		77.8	39%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 67	6324 77	1627 10	58.8	29%		78.0	39%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 68	6324 97	1627 10	58.0	29%		77.2	39%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 69	6325 17	1627 10	56.7	28%		75.9	38%	0.1	0%		9.7	32%	0.0	0% 22.8 %	

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_270	632537	162710	54.4	27%			73.6	37%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_271	632557	162710	51.4	26%			70.6	35%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_272	632577	162710	48.1	24%			67.3	34%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_273	632597	162710	39.4	20%			58.6	29%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_274	632617	162710	23.6	12%			42.8	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_275	632637	162710	22.6	11%			41.8	21%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_276	632657	162710	21.7	11%			40.9	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_277	632677	162710	21.5	11%			40.7	20%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_278	632177	162730	58.7	29%			77.9	39%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_279	632197	162730	58.9	29%			78.1	39%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_2 80	6322 17	1627 30	60.0	30%			79.2	40%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_2 81	6322 37	1627 30	59.1	30%			78.3	39%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_2 82	6322 57	1627 30	58.4	29%			77.6	39%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_2 83	6322 77	1627 30	60.5	30%			79.7	40%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_2 84	6322 97	1627 30	63.7	32%			82.9	41%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_2 85	6323 17	1627 30	67.4	34%			86.6	43%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_2 86	6323 37	1627 30	70.1	35%			89.3	45%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_2 87	6323 57	1627 30	72.5	36%			91.7	46%	0.2	1%	9.8	33%	0.0	0%	22.8	228%		
SSSI_2 88	6323 77	1627 30	72.2	36%			91.4	46%	0.2	1%	9.8	33%	0.0	0%	22.8	228%		
SSSI_2 89	6323 97	1627 30	70.2	35%			89.4	45%	0.2	1%	9.8	33%	0.0	0%	22.8	228%		

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)				
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	
SSSI_2 90	6324 17	1627 30	68.6	34%		87.8	44%	0.2	1%		9.8	33%	0.0	0% 22.8 %	
SSSI_2 91	6324 37	1627 30	66.5	33%		85.7	43%	0.2	1%		9.8	33%	0.0	0% 22.8 %	
SSSI_2 92	6324 57	1627 30	64.2	32%		83.4	42%	0.2	1%		9.8	33%	0.0	0% 22.8 %	
SSSI_2 93	6324 77	1627 30	64.9	32%		84.1	42%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 94	6324 97	1627 30	63.9	32%		83.1	42%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 95	6325 17	1627 30	61.8	31%		81.0	41%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 96	6325 37	1627 30	59.2	30%		78.4	39%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 97	6325 57	1627 30	55.3	28%		74.5	37%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 98	6325 77	1627 30	50.8	25%		70.0	35%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_2 99	6325 97	1627 30	35.5	18%		54.7	27%	0.1	0%		9.7	32%	0.0	0% 22.8 %	

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)				Annual Mean NOx ($\mu\text{g}/\text{m}^3$)				Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_300	632617	162730	24.7	12%		43.9	22%	0.1	0%		9.7	32%	0.0	0% 22.8 228 %
SSSI_301	632637	162730	23.5	12%		42.7	21%	0.1	0%		9.7	32%	0.0	0% 22.8 228 %
SSSI_302	632657	162730	22.8	11%		42.0	21%	0.1	0%		9.7	32%	0.0	0% 22.8 228 %
SSSI_303	632177	162750	61.7	31%		80.9	40%	0.1	0%		9.7	32%	0.0	0% 22.8 228 %
SSSI_304	632197	162750	62.7	31%		81.9	41%	0.1	0%		9.7	32%	0.0	0% 22.8 228 %
SSSI_305	632217	162750	64.1	32%		83.3	42%	0.1	0%		9.7	32%	0.0	0% 22.8 228 %
SSSI_306	632237	162750	65.7	33%		84.9	42%	0.1	0%		9.7	32%	0.0	0% 22.8 228 %
SSSI_307	632257	162750	64.7	32%		83.9	42%	0.1	0%		9.7	32%	0.0	0% 22.8 228 %
SSSI_308	632277	162750	64.2	32%		83.4	42%	0.1	0%		9.7	32%	0.0	0% 22.8 228 %
SSSI_309	632297	162750	67.2	34%		86.4	43%	0.2	1%		9.8	33%	0.0	0% 22.8 228 %

Receptor	Daily Mean NOx (µg/m³)					Annual Mean NOx (µg/m³)					Annual Mean N Deposition (kg N/ha/yr)				
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	
SSSI_3 10	6323 17	1627 50	70.9	35%		90.1	45%	0.2	1%		9.8	33%	0.0	0% 22.8 %	
SSSI_3 11	6323 37	1627 50	75.1	38%		94.3	47%	0.2	1%		9.8	33%	0.0	0% 22.8 %	
SSSI_3 12	6323 57	1627 50	78.1	39%		97.3	49%	0.2	1%		9.8	33%	0.0	0% 22.8 %	
SSSI_3 13	6323 77	1627 50	78.3	39%		97.5	49%	0.2	1%		9.8	33%	0.0	0% 22.8 %	
SSSI_3 14	6323 97	1627 50	76.2	38%		95.4	48%	0.2	1%		9.8	33%	0.0	0% 22.8 %	
SSSI_3 15	6324 17	1627 50	74.4	37%		93.6	47%	0.2	1%		9.8	33%	0.0	0% 22.8 %	
SSSI_3 16	6324 37	1627 50	72.2	36%		91.4	46%	0.2	1%		9.8	33%	0.0	0% 22.8 %	
SSSI_3 17	6324 57	1627 50	70.7	35%		89.9	45%	0.2	1%		9.8	33%	0.0	0% 22.8 %	
SSSI_3 18	6324 77	1627 50	71.3	36%		90.5	45%	0.2	1%		9.8	33%	0.0	0% 22.8 %	
SSSI_3 19	6324 97	1627 50	70.0	35%		89.2	45%	0.2	1%		9.8	33%	0.0	0% 22.8 %	

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)				
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	
SSSI_3 20	6325 17	1627 50	67.8	34%		87.0	44%	0.2	1%		9.8	33%	0.0	0% 22.8 %	
SSSI_3 21	6325 37	1627 50	63.8	32%		83.0	42%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_3 22	6325 57	1627 50	59.0	30%		78.2	39%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_3 23	6325 77	1627 50	53.7	27%		72.9	36%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_3 24	6325 97	1627 50	29.4	15%		48.6	24%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_3 25	6326 17	1627 50	25.9	13%		45.1	23%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_3 26	6326 37	1627 50	24.6	12%		43.8	22%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_3 27	6321 61	1627 70	62.4	31%		81.6	41%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_3 28	6321 77	1627 70	64.2	32%		83.4	42%	0.1	0%		9.7	32%	0.0	0% 22.8 %	
SSSI_3 29	6321 97	1627 70	66.7	33%		85.9	43%	0.1	0%		9.7	32%	0.0	0% 22.8 %	

Receptor	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_30	6322 17	1627 70	69.0	35%		88.2	44%	0.1	0%		9.7	32%	0.0	0% 22.8 %
SSSI_31	6322 37	1627 70	71.0	36%		90.2	45%	0.1	0%		9.7	32%	0.0	0% 22.8 %
SSSI_32	6322 57	1627 70	72.8	36%		92.0	46%	0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_33	6322 77	1627 70	71.9	36%		91.1	46%	0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_34	6322 97	1627 70	71.8	36%		91.0	46%	0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_35	6323 17	1627 70	75.2	38%		94.4	47%	0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_36	6323 37	1627 70	80.8	40%		100. 0	50%	0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_37	6323 57	1627 70	84.4	42%		103. 6	52%	0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_38	6323 77	1627 70	85.3	43%		104. 5	52%	0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_39	6323 97	1627 70	83.0	42%		102. 2	51%	0.2	1%		9.8	33%	0.0	0% 22.8 %

Receptor	Daily Mean NOx (µg/m³)				Annual Mean NOx (µg/m³)				Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_3 40	6324 17	1627 70	81.5		41%		100. 7	50% 0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_3 41	6324 37	1627 70	80.6		40%		99.8	50% 0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_3 42	6324 57	1627 70	79.0		40%		98.2	49% 0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_3 43	6324 77	1627 70	78.2		39%		97.4	49% 0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_3 44	6324 97	1627 70	77.0		39%		96.2	48% 0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_3 45	6325 17	1627 70	73.8		37%		93.0	47% 0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_3 46	6325 37	1627 70	68.6		34%		87.8	44% 0.2	1%		9.8	33%	0.0	0% 22.8 %
SSSI_3 47	6325 57	1627 70	62.5		31%		81.7	41% 0.1	0%		9.7	32%	0.0	0% 22.8 %
SSSI_3 48	6325 77	1627 70	53.8		27%		73.0	37% 0.1	0%		9.7	32%	0.0	0% 22.8 %
SSSI_3 49	6325 97	1627 70	28.9		14%		48.1	24% 0.1	0%		9.7	32%	0.0	0% 22.8 %

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_3 50	6326 17	1627 70	27.0	14%			46.2	23%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_3 51	6321 47	1627 90	63.7	32%			82.9	41%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_3 52	6321 57	1627 90	64.9	32%			84.1	42%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_3 53	6321 77	1627 90	67.6	34%			86.8	43%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_3 54	6321 97	1627 90	70.6	35%			89.8	45%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_3 55	6322 17	1627 90	73.8	37%			93.0	47%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_3 56	6322 37	1627 90	76.9	38%			96.1	48%	0.2	1%		9.8	33%	0.0	0%	22.8	228%	
SSSI_3 57	6322 57	1627 90	79.6	40%			98.8	49%	0.2	1%		9.8	33%	0.0	0%	22.8	228%	
SSSI_3 58	6322 77	1627 90	81.8	41%			101.0	51%	0.2	1%		9.8	33%	0.0	0%	22.8	228%	
SSSI_3 59	6322 97	1627 90	81.0	41%			100.2	50%	0.2	1%		9.8	33%	0.0	0%	22.8	228%	

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_3 60	6323 17	1627 90	81.6		41%		100.8	50%	0.2		1%		9.8	33%	0.0	0%	22.8	228%
SSSI_3 61	6323 37	1627 90	86.9		43%		106.1	53%	0.2		1%		9.8	33%	0.0	0%	22.8	228%
SSSI_3 62	6323 57	1627 90	91.6		46%		110.8	55%	0.2		1%		9.8	33%	0.0	0%	22.8	228%
SSSI_3 63	6323 77	1627 90	93.6		47%		112.8	56%	0.3		1%		9.9	33%	0.1	1%	22.9	229%
SSSI_3 64	6323 97	1627 90	90.8		45%		110.0	55%	0.3		1%		9.9	33%	0.1	1%	22.9	229%
SSSI_3 65	6324 17	1627 90	89.6		45%		108.8	54%	0.3		1%		9.9	33%	0.1	1%	22.9	229%
SSSI_3 66	6324 37	1627 90	90.5		45%		109.7	55%	0.3		1%		9.9	33%	0.1	1%	22.9	229%
SSSI_3 67	6324 57	1627 90	88.0		44%		107.2	54%	0.3		1%		9.9	33%	0.1	1%	22.9	229%
SSSI_3 68	6324 77	1627 90	86.1		43%		105.3	53%	0.2		1%		9.8	33%	0.0	0%	22.8	228%
SSSI_3 69	6324 97	1627 90	83.6		42%		102.8	51%	0.2		1%		9.8	33%	0.0	0%	22.8	228%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean NOx ($\mu\text{g}/\text{m}^3$)					Annual Mean N Deposition (kg N/ha/yr)				
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	
SSSI_3 70	6325 17	1627 90	78.7	39%			97.9	49%	0.2	1%	9.8	33%	0.0	0%	22.8 %
SSSI_3 71	6325 37	1627 90	72.4	36%			91.6	46%	0.2	1%	9.8	33%	0.0	0%	22.8 %
SSSI_3 72	6325 57	1627 90	64.8	32%			84.0	42%	0.2	1%	9.8	33%	0.0	0%	22.8 %
SSSI_3 73	6325 77	1627 90	46.6	23%			65.8	33%	0.1	0%	9.7	32%	0.0	0%	22.8 %
SSSI_3 74	6325 97	1627 90	30.4	15%			49.6	25%	0.1	0%	9.7	32%	0.0	0%	22.8 %
SSSI_3 75	6321 37	1628 10	65.4	33%			84.6	42%	0.1	0%	9.7	32%	0.0	0%	22.8 %
SSSI_3 76	6321 57	1628 10	68.6	34%			87.8	44%	0.1	0%	9.7	32%	0.0	0%	22.8 %
SSSI_3 77	6321 77	1628 10	72.0	36%			91.2	46%	0.1	0%	9.7	32%	0.0	0%	22.8 %
SSSI_3 78	6321 97	1628 10	75.6	38%			94.8	47%	0.1	0%	9.7	32%	0.0	0%	22.8 %
SSSI_3 79	6322 17	1628 04	77.1	39%			96.3	48%	0.2	1%	9.8	33%	0.0	0%	22.8 %

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_380	632257	162810	87.0	44%		106.2	53%	0.2	1%		9.8	33%	0.0	0%	22.8	228%		
SSSI_381	632277	162810	90.5	45%		109.7	55%	0.2	1%		9.8	33%	0.0	0%	22.8	228%		
SSSI_382	632297	162810	93.0	47%		112.2	56%	0.2	1%		9.8	33%	0.0	0%	22.8	228%		
SSSI_383	632317	162810	92.4	46%		111.6	56%	0.3	1%		9.9	33%	0.1	1%	22.9	229%		
SSSI_384	632337	162810	93.2	47%		112.4	56%	0.3	1%		9.9	33%	0.1	1%	22.9	229%		
SSSI_385	632357	162810	100.5	50%		119.7	60%	0.3	1%		9.9	33%	0.1	1%	22.9	229%		
SSSI_386	632377	162810	102.3	51%		121.5	61%	0.3	1%		9.9	33%	0.1	1%	22.9	229%		
SSSI_387	632397	162810	100.0	50%		119.2	60%	0.3	1%		9.9	33%	0.1	1%	22.9	229%		
SSSI_388	632417	162810	102.2	51%		121.4	61%	0.3	1%		9.9	33%	0.1	1%	22.9	229%		
SSSI_389	632437	162810	103.7	52%		122.9	61%	0.3	1%		9.9	33%	0.1	1%	22.9	229%		

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_390	632457	162810	101.3	51%			120.5	60%	0.3	1%		9.9	33%	0.1	1%	22.9	229%	
SSSI_391	632477	162810	98.5	49%			117.7	59%	0.3	1%		9.9	33%	0.1	1%	22.9	229%	
SSSI_392	632497	162810	93.2	47%			112.4	56%	0.3	1%		9.9	33%	0.1	1%	22.9	229%	
SSSI_393	632517	162810	84.9	42%			104.1	52%	0.2	1%		9.8	33%	0.0	0%	22.8	228%	
SSSI_394	632537	162810	75.3	38%			94.5	47%	0.2	1%		9.8	33%	0.0	0%	22.8	228%	
SSSI_395	632557	162810	65.2	33%			84.4	42%	0.2	1%		9.8	33%	0.0	0%	22.8	228%	
SSSI_396	632577	162810	35.1	18%			54.3	27%	0.2	1%		9.8	33%	0.0	0%	22.8	228%	
SSSI_397	632122	162830	64.9	32%			84.1	42%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_398	632137	162830	67.9	34%			87.1	44%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_399	632157	162830	72.1	36%			91.3	46%	0.1	0%		9.7	32%	0.0	0%	22.8	228%	

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_400	632175	162830	75.9	38%			95.1	48%	0.1	0%	9.7	32%	0.0	0%	22.8	228%		
SSSI_401	632258	162829	94.6	47%			113.8	57%	0.2	1%	9.8	33%	0.0	0%	22.8	228%		
SSSI_402	632277	162830	100.0	50%			119.2	60%	0.3	1%	9.9	33%	0.1	1%	22.9	229%		
SSSI_403	632297	162830	104.0	52%			123.2	62%	0.3	1%	9.9	33%	0.1	1%	22.9	229%		
SSSI_404	632317	162830	106.1	53%			125.3	63%	0.3	1%	9.9	33%	0.1	1%	22.9	229%		
SSSI_405	632337	162830	106.8	53%			126.0	63%	0.3	1%	9.9	33%	0.1	1%	22.9	229%		
SSSI_406	632357	162830	112.2	56%			131.4	66%	0.4	1%	10	33%	0.1	1%	22.9	229%		
SSSI_407	632377	162830	118.2	59%			137.4	69%	0.4	1%	10	33%	0.1	1%	22.9	229%		
SSSI_408	632397	162830	123.0	62%			142.2	71%	0.4	1%	10	33%	0.1	1%	22.9	229%		
SSSI_409	632417	162830	125.1	63%			144.3	72%	0.4	1%	10	33%	0.1	1%	22.9	229%		

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_4 10	6324 37	1628 30	127. 2		64%		146. 4	73% 0.4		1%		10	33%	0.1	1%	22.9	229%	
SSSI_4 11	6324 57	1628 30	126. 7		63%		145. 9	73% 0.4		1%		10	33%	0.1	1%	22.9	229%	
SSSI_4 12	6324 77	1628 30	121. 9		61%		141. 1	71% 0.3		1%		9.9	33%	0.1	1%	22.9	229%	
SSSI_4 13	6324 97	1628 30	110. 6		55%		129. 8	65% 0.3		1%		9.9	33%	0.1	1%	22.9	229%	
SSSI_4 14	6325 17	1628 30	95.4		48%		114. 6	57% 0.3		1%		9.9	33%	0.1	1%	22.9	229%	
SSSI_4 15	6325 37	1628 30	79.9		40%		99.1	50% 0.2		1%		9.8	33%	0.0	0%	22.8	228%	
SSSI_4 16	6325 57	1628 30	65.8		33%		85.0	43% 0.2		1%		9.8	33%	0.0	0%	22.8	228%	
SSSI_4 17	6321 17	1628 50	65.5		33%		84.7	42% 0.1		0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_4 18	6321 37	1628 50	69.6		35%		88.8	44% 0.1		0%		9.7	32%	0.0	0%	22.8	228%	
SSSI_4 19	6321 57	1628 50	74.4		37%		93.6	47% 0.1		0%		9.7	32%	0.0	0%	22.8	228%	

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_4 20	6322 77	1628 50	109. 2	55%		128. 4	64% 7	0.3	1%		9.9	33%	0.1	1%	22.9	229%		
SSSI_4 21	6322 97	1628 50	115. 5	58%		134. 7	67% 7	0.3	1%		9.9	33%	0.1	1%	22.9	229%		
SSSI_4 22	6323 17	1628 50	121. 2	61%		140. 4	70% 8	0.4	1%		10	33%	0.1	1%	22.9	229%		
SSSI_4 23	6323 37	1628 50	128. 6	64%		147. 8	74% 8	0.4	1%		10	33%	0.1	1%	22.9	229%		
SSSI_4 24	6323 57	1628 50	134. 9	67%		154. 1	77% 1	0.5	2%		10.1	34%	0.1	1%	22.9	229%		
SSSI_4 25	6323 77	1628 50	144. 6	72%		163. 8	82% 8	0.6	2%		10.2	34%	0.1	1%	22.9	229%		
SSSI_4 26	6323 97	1628 50	162. 0	81%		181. 2	91% 2	0.6	2%		10.2	34%	0.1	1%	22.9	229%		
SSSI_4 27	6324 17	1628 50	164. 5	82%		183. 7	92% 7	0.6	2%		10.2	34%	0.1	1%	22.9	229%		
SSSI_4 28	6324 37	1628 50	167. 5	84%		186. 7	93% 7	0.5	2%		10.1	34%	0.1	1%	22.9	229%		
SSSI_4 29	6324 57	1628 50	168. 2	84%		187. 4	94% 4	0.5	2%		10.1	34%	0.1	1%	22.9	229%		

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_4 30	6324 77	1628 50	161. 2		81%		180. 4	90%	0.4		1%		10	33%	0.1	1%	22.9	229%
SSSI_4 31	6324 97	1628 50	140. 4		70%		159. 6	80%	0.4		1%		10	33%	0.1	1%	22.9	229%
SSSI_4 32	6325 17	1628 50	112. 6		56%		131. 8	66%	0.3		1%		9.9	33%	0.1	1%	22.9	229%
SSSI_4 33	6325 37	1628 50	86.8		43%		106. 0	53%	0.3		1%		9.9	33%	0.1	1%	22.9	229%
SSSI_4 34	6325 46	1628 70	75.3		38%		94.5	47%	0.3		1%		9.9	33%	0.1	1%	22.9	229%
SSSI_4 35	6320 97	1628 70	63.0		32%		82.2	41%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_4 36	6321 17	1628 70	67.4		34%		86.6	43%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_4 37	6321 37	1628 70	72.0		36%		91.2	46%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_4 38	6321 49	1628 70	75.0		38%		94.2	47%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_4 39	6322 77	1628 70	120. 4		60%		139. 6	70%	0.3		1%		9.9	33%	0.1	1%	22.9	229%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_440	6322.97	1628.70	129.3	65%		148.5	74%	0.4	1%		10	33%	0.1	1%	22.9	229%		
SSSI_441	6323.17	1628.70	142.0	71%		161.2	81%	0.5	2%		10.1	34%	0.1	1%	22.9	229%		
SSSI_442	6323.37	1628.70	160.2	80%		179.4	90%	0.6	2%		10.2	34%	0.1	1%	22.9	229%		
SSSI_443	6323.57	1628.70	175.6	88%		194.8	97%	0.7	2%		10.3	34%	0.1	1%	22.9	229%		
SSSI_444	6323.77	1628.70	180.6	90%		199.8	100%	0.8	3%		10.4	35%	0.2	2%	23.0	230%		
SSSI_445	6323.97	1628.70	219.8	110%		239.0	120%	0.9	3%		10.5	35%	0.2	2%	23.0	230%		
SSSI_446	6324.17	1628.70	227.3	114%		246.5	123%	0.8	3%		10.4	35%	0.2	2%	23.0	230%		
SSSI_447	6324.37	1628.70	226.0	113%		245.2	123%	0.7	2%		10.3	34%	0.1	1%	22.9	229%		
SSSI_448	6324.57	1628.70	227.6	114%		246.8	123%	0.6	2%		10.2	34%	0.1	1%	22.9	229%		
SSSI_449	6324.77	1628.70	211.5	106%		230.7	115%	0.5	2%		10.1	34%	0.1	1%	22.9	229%		

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_4 50	6324 97	1628 70	168. 8	84%		188. 0	94%	0.4	1%		10	33%	0.1	1%	22.9	229%		
SSSI_4 51	6325 17	1628 70	123. 5	62%		142. 7	71%	0.3	1%		9.9	33%	0.1	1%	22.9	229%		
SSSI_4 52	6325 37	1628 70	87.6	44%		106. 8	53%	0.3	1%		9.9	33%	0.1	1%	22.9	229%		
SSSI_4 53	6320 82	1628 90	60.3	30%		79.5	40%	0.1	0%		9.7	32%	0.0	0%	22.8	228%		
SSSI_4 54	6320 97	1628 90	62.6	31%		81.8	41%	0.1	0%		9.7	32%	0.0	0%	22.8	228%		
SSSI_4 55	6321 17	1628 90	67.4	34%		86.6	43%	0.1	0%		9.7	32%	0.0	0%	22.8	228%		
SSSI_4 56	6321 35	1628 90	72.2	36%		91.4	46%	0.1	0%		9.7	32%	0.0	0%	22.8	228%		
SSSI_4 57	6322 89	1628 90	139. 4	70%		158. 6	79%	0.4	1%		10	33%	0.1	1%	22.9	229%		
SSSI_4 58	6322 97	1628 90	147. 5	74%		166. 7	83%	0.4	1%		10	33%	0.1	1%	22.9	229%		
SSSI_4 59	6323 17	1628 90	173. 4	87%		192. 6	96%	0.6	2%		10.2	34%	0.1	1%	22.9	229%		

Receptor	Daily Mean NOx (µg/m³)						Annual Mean NOx (µg/m³)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_4 60	6323 37	1628 90	200. 7	100%		219. 9	110 %	0.8	3%		10.4	35%	0.2	2%	23.0	230 %		
SSSI_4 61	6323 57	1628 90	243. 4	122%		262. 6	131 %	1.1	4%		10.7	36%	0.2	2%	23.0	230 %		
SSSI_4 62	6323 77	1628 90	294. 2	147%		313. 4	157 %	1.4	5%		11	37%	0.3	3%	23.1	231 %		
SSSI_4 63	6323 97	1628 90	358. 6	179%		377. 8	189 %	1.5	5%		11.1	37%	0.3	3%	23.1	231 %		
SSSI_4 64	6324 17	1628 90	398. 1	199%		417. 3	209 %	1.2	4%		10.8	36%	0.2	2%	23.0	230 %		
SSSI_4 65	6324 37	1628 90	418. 3	209%		437. 5	219 %	1.1	4%		10.7	36%	0.2	2%	23.0	230 %		
SSSI_4 66	6324 57	1628 90	326. 8	163%		346. 0	173 %	0.9	3%		10.5	35%	0.2	2%	23.0	230 %		
SSSI_4 67	6324 77	1628 90	281. 0	141%		300. 2	150 %	0.7	2%		10.3	34%	0.1	1%	22.9	229 %		
SSSI_4 68	6324 97	1628 90	192. 5	96%		211. 7	106 %	0.5	2%		10.1	34%	0.1	1%	22.9	229 %		
SSSI_4 69	6325 17	1628 90	112. 3	56%		131. 5	66%	0.4	1%		10	33%	0.1	1%	22.9	229 %		

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_470	632537	162890	68.2	34%		87.4	44%	0.3	1%		9.9	33%	0.1	1%	22.9	229%		
SSSI_471	632549	162890	54.9	27%		74.1	37%	0.3	1%		9.9	33%	0.1	1%	22.9	229%		
SSSI_472	632077	162910	60.3	30%		79.5	40%	0.1	0%		9.7	32%	0.0	0%	22.8	228%		
SSSI_473	632097	162910	64.3	32%		83.5	42%	0.1	0%		9.7	32%	0.0	0%	22.8	228%		
SSSI_474	632117	162910	68.7	34%		87.9	44%	0.1	0%		9.7	32%	0.0	0%	22.8	228%		
SSSI_475	632297	162910	164.	82%		184.0	92%	0.5	2%		10.1	34%	0.1	1%	22.9	229%		
SSSI_476	632317	162910	206.	103%		225.4	113%	0.7	2%		10.3	34%	0.1	1%	22.9	229%		
SSSI_477	632337	162910	257.	129%		276.5	138%	1.0	3%		10.6	35%	0.2	2%	23.0	230%		
SSSI_478	632357	162910	383.	192%		402.5	201%	1.7	6%		11.3	38%	0.3	3%	23.1	231%		
SSSI_479	632377	162910	640.	320%		660.0	330%	2.9	10%		12.5	42%	0.6	6%	23.4	234%		

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_4 80	6323 97	1629 10	729. 5	365%		748. 7	374 %	4.2		14%		13.8	46%	0.8	8%	23.6	236 %	
SSSI_4 81	6324 17	1629 10	740. 7	370%		759. 9	380 %	3.1		10%		12.7	42%	0.6	6%	23.4	234 %	
SSSI_4 82	6324 37	1629 10	740. 7	370%		759. 9	380 %	1.8		6%		11.4	38%	0.4	4%	23.2	232 %	
SSSI_4 83	6324 57	1629 10	657. 4	329%		676. 6	338 %	1.2		4%		10.8	36%	0.2	2%	23.0	230 %	
SSSI_4 84	6324 77	1629 10	330. 2	165%		349. 4	175 %	0.9		3%		10.5	35%	0.2	2%	23.0	230 %	
SSSI_4 85	6324 97	1629 10	301. 5	151%		320. 7	160 %	0.6		2%		10.2	34%	0.1	1%	22.9	229 %	
SSSI_4 86	6325 17	1629 10	77.6	39%		96.8	48%	0.4		1%		10	33%	0.1	1%	22.9	229 %	
SSSI_4 87	6325 37	1629 10	63.9	32%		83.1	42%	0.4		1%		10	33%	0.1	1%	22.9	229 %	
SSSI_4 88	6325 52	1629 10	55.6	28%		74.8	37%	0.3		1%		9.9	33%	0.1	1%	22.9	229 %	
SSSI_4 89	6320 57	1629 30	56.5	28%		75.7	38%	0.1		0%		9.7	32%	0.0	0%	22.8	228 %	

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_4 90	6320 77	1629 30	60.2		30%		79.4	40%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_4 91	6320 97	1629 30	64.4		32%		83.6	42%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_4 92	6321 10	1629 31	67.5		34%		86.7	43%	0.1		0%		9.7	32%	0.0	0%	22.8	228%
SSSI_4 93	6323 37	1629 14	269. 7		135%		288. 9	144	1.1		4%		10.7	36%	0.2	2%	23.0	230%
SSSI_4 94	6323 58	1629 15	447. 6		224%		466. 8	233	2.0		7%		11.6	39%	0.4	4%	23.2	232%
SSSI_4 95	6323 78	1629 18	778. 2		389%		797. 4	399	3.9		13%		13.5	45%	0.8	8%	23.6	236%
SSSI_4 96	6323 98	1629 20	750. 1		375%		769. 3	385	4.7		16%		14.3	48%	0.9	9%	23.7	237%
SSSI_4 97	6324 17	1629 23	740. 7		370%		759. 9	380	5.4		18%		15	50%	1.1	11%	23.9	239%
SSSI_4 98	6324 37	1629 28	740. 7		370%		759. 9	380	3.1		10%		12.7	42%	0.6	6%	23.4	234%
SSSI_4 99	6324 57	1629 30	725. 9		363%		745. 1	373	1.8		6%		11.4	38%	0.4	4%	23.2	232%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_500	6324.77	1629.30	338.8	169%			358.0	179 %	1.3	4%	10.9	36%	0.3	3%	23.1	231 %		
SSSI_501	6324.97	1629.30	118.7	59%			137.9	69% 0.8		3%	10.4	35%	0.2	2%	23.0	230 %		
SSSI_502	6325.17	1629.30	78.8	39%			98.0	49% 0.6		2%	10.2	34%	0.1	1%	22.9	229 %		
SSSI_503	6325.37	1629.30	64.6	32%			83.8	42% 0.5		2%	10.1	34%	0.1	1%	22.9	229 %		
SSSI_504	6325.55	1629.30	55.5	28%			74.7	37% 0.4		1%	10	33%	0.1	1%	22.9	229 %		
SSSI_505	6320.57	1629.50	54.0	27%			73.2	37% 0.1		0%	9.7	32%	0.0	0%	22.8	228 %		
SSSI_506	6320.77	1629.50	58.9	29%			78.1	39% 0.1		0%	9.7	32%	0.0	0%	22.8	228 %		
SSSI_507	6320.97	1629.50	63.1	32%			82.3	41% 0.1		0%	9.7	32%	0.0	0%	22.8	228 %		
SSSI_508	6320.84	1629.70	52.4	26%			71.6	36% 0.1		0%	9.7	32%	0.0	0%	22.8	228 %		
SSSI_509	6320.37	1629.70	35.9	18%			55.1	28% 0.1		0%	9.7	32%	0.0	0%	22.8	228 %		

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL				
SSSI_5 10	6320 57	1629 70	41.5		21%		60.7	30%	0.1		0%		9.7	32%	0.0	0%	22.8	228 %
SSSI_5 11	6320 77	1629 70	48.8		24%		68.0	34%	0.1		0%		9.7	32%	0.0	0%	22.8	228 %
SSSI_5 12	6320 17	1629 90	21.0		11%		40.2	20%	0.1		0%		9.7	32%	0.0	0%	22.8	228 %
SSSI_5 13	6320 37	1629 90	22.7		11%		41.9	21%	0.1		0%		9.7	32%	0.0	0%	22.8	228 %
SSSI_5 14	6320 57	1629 90	24.8		12%		44.0	22%	0.1		0%		9.7	32%	0.0	0%	22.8	228 %
SSSI_5 15	6320 72	1629 90	26.7		13%		45.9	23%	0.1		0%		9.7	32%	0.0	0%	22.8	228 %
SSSI_5 16	6319 98	1630 16	19.6		10%		38.6	19%	0.0		0%		9.5	32%	0.0	0%	22.7	227 %
SSSI_5 17	6320 17	1630 10	20.5		10%		39.8	20%	0.1		0%		9.8	33%	0.0	0%	22.7	227 %
SSSI_5 18	6320 37	1630 10	21.4		11%		40.7	20%	0.1		0%		9.8	33%	0.0	0%	22.7	227 %
SSSI_5 19	6320 58	1630 10	22.4		11%		41.7	21%	0.1		0%		9.8	33%	0.0	0%	22.7	227 %

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean NOx ($\mu\text{g}/\text{m}^3$)						Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_5 20	6320 17	1630 30	20.2	10%			39.5	20%	0.0	0%	9.7	32%	0.0	0%	22.7	227		%
SSSI_5 21	6320 37	1630 30	21.1	11%			40.4	20%	0.1	0%	9.8	33%	0.0	0%	22.7	227		%
SSSI_5 22	6320 44	1630 30	21.4	11%			40.7	20%	0.1	0%	9.8	33%	0.0	0%	22.7	227		%
SSSI_5 23	6320 35	1630 45	20.3	10%			39.6	20%	0.1	0%	9.8	33%	0.0	0%	22.7	227		%
SSSI_5 24	6325 17	1629 35	79.9	40%			99.1	50%	0.7	2%	10.3	34%	0.1	1%	22.9	229		%
SSSI_5 25	6324 57	1629 34	725.9	363%			745.1	373%	2.2	7%	11.8	39%	0.4	4%	23.2	232		%
SSSI_5 26	6325 37	1629 34	64.8	32%			84.0	42%	0.5	2%	10.1	34%	0.1	1%	22.9	229		%
SSSI_5 27	6324 97	1629 36	110.0	55%			129.2	65%	1.0	3%	10.6	35%	0.2	2%	23.0	230		%
SSSI_5 28	6324 76	1629 35	339.9	170%			359.1	180%	1.6	5%	11.2	37%	0.3	3%	23.1	231		%
SSSI_5 29	6325 52	1629 34	56.7	28%			75.9	38%	0.4	1%	10	33%	0.1	1%	22.9	229		%

Receptor	Daily Mean NOx ($\mu\text{g}/\text{m}^3$)				Annual Mean NOx ($\mu\text{g}/\text{m}^3$)				Annual Mean N Deposition (kg N/ha/yr)					
	Easting	Northing	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL	PC	PC as % CL	PEC	PEC as % CL
SSSI_5	6320 30	1629 43	51.6 50	26%		70.8	35%	0.1	0%		9.7	32%	0.0	22.8 %

Results represent maximum impact at each receptor point based on five years of meteorological data

PC = Process Contribution (i.e. Impact from Generator Emissions)

PEC = Predicted Environmental Concentration (PC + Background)

CL = Critical Level or Critical Load

Daily Mean NOx CL = 200 $\mu\text{g}/\text{m}^3$

Annual Mean NOx CL = 30 $\mu\text{g}/\text{m}^3$

Annual Mean N Deposition CL = 10 kg N/ha/yr

A.8 Conclusion

A.8.1 The air quality assessments for the Kent and Suffolk Onshore Schemes have been undertaken in accordance with the sequential approach set out in Natural England's standard advice. Screening, assessment and mitigation have been applied proportionately, and where no credible risk to designated sites was identified, no further assessment was undertaken. No significant air quality effects on designated sites were identified from the assessments following this approach and the application of the mitigation hierarchy.

A.8.2 This Technical Note demonstrates that Natural England's standard advice has been fully taken into account and that following this advice, the conclusion that there would be no significant air quality effects on designated sites, as presented in the Environmental Statement, **Application Document 6.6 Habitats Regulations Assessment Report [REP3-029]** and supporting application documents, is robust.

2. References

Centre for Ecology and Hydrology. (2026). *Air Pollution Information System*. Retrieved from <https://www.apis.ac.uk/EPUK>

IAQM & IAQM. (2017). *Guidance on land-use planning and development control: Planning for air quality 2017 v1.2*.

IAQM. (2024). *Guidance on the Assessment of dust from demolition and construction 2024 V2.2*.

JNCC. (2021). *JNCC Report No. 696 Main Report Guidance on Decision-making Thresholds for Air Pollution*.

National Grid plc
National Grid House,
Warwick Technology Park,
Gallows Hill, Warwick.
CV34 6DA United Kingdom

Registered in England and Wales
No. 4031152
nationalgrid.com